Advertisement

Calculating the closed ordinal Ramsey number Rcl(ω · 2, 3)

  • Omer MermelsteinEmail author
Article
  • 2 Downloads

Abstract

We show that the closed ordinal Ramsey number Rcl(ω · 2, 3) is equal to ω3 · 2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bau86]
    J. E. Baumgartner, Partition relations for countable topological spaces, Journal of Combinatorial Theory. Series A 43 (1986), 178–195.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [CH17]
    A. Caicedo and J. Hilton, Topological Ramsey numbers and countable ordinals, in Foundations of Mathematics, Contemporary Mathematics, Vol. 690, American Mathematical Society, Providence, RI, 2017, pp. 85–118.MathSciNetzbMATHGoogle Scholar
  3. [ER56]
    P. Erdős and R. Rado, A partition calculus in set theory, Bulletin of the American Mathematical Society 62 (1956), 427–489.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Hil16]
    J. Hilton, The topological pigeonhole principle for ordinals, Journal of Symbolic Logic 81 (2016), 662–686.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [HL10]
    A. Hajnal and J. A. Larson, Partition relations, on Handbook of Set Theory. Vols. 1, 2, 3, Springer, Dordrecht, 2010, pp. 129–213.CrossRefzbMATHGoogle Scholar
  6. [Pn15]
    C. Pi˜na, A topological Ramsey classification of countable ordinals, Acta Mathematica Hungarica 147 (2015), 477–509.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Department of MathematicsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations