Advertisement

Shalom’s property HFD and extensions by ℤ of locally finite groups

  • Jérémie BrieusselEmail author
  • Tianyi Zheng
Article
  • 8 Downloads

Abstract

We show that every finitely generated extension by ℤ of a locally normally finite group has Shalom’s property HFD. The statement is no longer true without the normality assumption. This permits to answer some questions of Shalom, Erschler–Ozawa and Kozma. We also obtain a Neumann–Neumann embedding result that any countable locally finite group embeds into a two-generated amenable group with property HFD.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BDCKY17]
    I. Benjamini, H. Duminil-Copin, G. Kozma and A. Yadin, Minimal growth harmonic functions on lamplighter groups, New York Journal of Mathematics 23 (2017), 833–858.MathSciNetzbMATHGoogle Scholar
  2. [BTZ17]
    J. Brieussel, R. Tanaka and T. Zheng, Random walks on the discrete affine group, preprint, arXiv:1703.07741.Google Scholar
  3. [BZ15]
    J. Brieussel and T. Zheng, Speed of random walks, isoperimetry and compression of finitely generated groups, preprint, arXiv:1510.08040.Google Scholar
  4. [CKW94]
    D. I. Cartwright, V. A. Kaimanovich and W. Woess, Random walks on the affine group of local fields and of homogeneous trees, Université de Grenoble. Annales de l’Institut Fourier 44 (1994), 1243–1288.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [EO16]
    A. Erschler and N. Ozawa, Finite-dimensional representations constructed from random walks, Commentarii Mathematici Helvetici 93 (2018), 555–586.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [FV17]
    T. Fernós and A. Valette, The Mayer–Vietoris sequence for graphs of groups, property (T), and the first 2-Betti number, Homology, Homotopy and Applications 19 (2017), 251–274.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [FVM12]
    T. Fernós, A. Valette and F. Martin, Reduced 1-cohomology and relative property (T), Mathematische Zeitschrift 270 (2012), 613–626.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Gou16]
    A. Gournay, Mixing, malnormal subgroups and cohomology in degree one, Groups, Geometry, and Dynamics 12 (2018), 1371–1416.MathSciNetCrossRefGoogle Scholar
  9. [Gro08]
    M. Gromov, Entropy and isoperimetry for linear and non-linear group actions, Groups, Geometry, and Dynamics 2 (2008), 499–593.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Gui72]
    A. Guichardet, Sur la cohomologie des groupes topologiques. II, Bulletin des Sciences Mathématiques 96 (1972), 305–332.MathSciNetzbMATHGoogle Scholar
  11. [Hal59]
    P. Hall, Some constructions for locally finite groups, Journal of the London Mathematical Society 34 (1959), 305–319.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Hil02]
    J. Hillman, Four-manifolds, Geometries and Knots, Geometry & Topology Monographs, Vol. 5, Geometry & Topology Publications, Coventry, 2002.zbMATHGoogle Scholar
  13. [Kle10]
    B. Kleiner, A new proof of Gromov’s theorem on groups of polynomial growth, Journal of the American Mathematical Society 23 (2010), 815–829.Google Scholar
  14. [LP16]
    R. Lyons and Y. Peres, Probability on Trees and Networks, Cambridge Series in Statistical and Probabilistic Mathematics, Vol. 42, Cambridge University Press, New York, 2016.Google Scholar
  15. [NN59]
    B. Neumann and H. Neumann, Embedding theorems for groups, Journal of the London Mathematical Society 34 (1959), 465–479.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Oza17]
    N. Ozawa, A functional analysis proof of Gromov’s polynomial growth theorem, Annales Scientifiques de l’École Normale Supérieure 51 (2018), 549–556.Google Scholar
  17. [Rév13]
    P. Révész, Random Walk in Random and Non-random Environments, World Scientific Publishing, Hackensack, NJ, 2013.CrossRefzbMATHGoogle Scholar
  18. [Sha00]
    Y. Shalom, Rigidity of commensurators and irreducible lattices, Inventiones Mathematicae 141 (2000), 1–54.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Sha04]
    Y. Shalom, Harmonic analysis, cohomology, and the large-scale geometry of amenable groups, Acta Mathematica 192 (2004), 119–185.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Var86]
    N. Th. Varopoulos, Théorie du potentiel sur des groupes et des variétés, Comptes Rendus des Séances de l’Académie des Sciences. Série I. Mathématique 302 (1986), 203–205, 1986.zbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  1. 1.Institut Montpelliérain Alexander GrothendieckUniversité de MontpellierMontpellierFrance
  2. 2.Department of MathematicsUniversity of California, San DiegoLa JollaUSA

Personalised recommendations