Advertisement

On the global sup-norm of GL(3) cusp forms

  • Valentin Blomer
  • Gergely Harcos
  • Péter Maga
Article
  • 6 Downloads

Abstract

Let φ be a spherical Hecke–Maaß cusp form on the non-compact space PGL3(ℤ)PGL3(ℝ). We establish various pointwise upper bounds for φ in terms of its Laplace eigenvalue λφ. These imply, for φ arithmetically normalized and tempered at the archimedean place, the bound
$$||\phi |{|_\infty } \ll_\varepsilon \lambda _\phi ^{39/40 + \varepsilon }$$
for the global sup-norm (without restriction to a compact subset). On the way, we derive a new uniform upper bound for the GL3 Jacquet–Whittaker function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba]
    C. B. Balogh, Asymptotic expansions of the modified Bessel function of the third kind of imaginary order, SIAM Journal on Applied Mathematics 15 (1967), 1315–1323.MathSciNetCrossRefGoogle Scholar
  2. [Bl]
    V. Blomer, Applications of the Kuznetsov formula on GL(3), Inventiones Mathematicae 194 (2013), 673–729.MathSciNetCrossRefGoogle Scholar
  3. [BB]
    V. Blomer and J. Buttcane, On the subconvexity problem for L-functions on GL(3), submitted, arXiv:1504.02667Google Scholar
  4. [BHM]
    V. Blomer, G. Harcos and D. Milićević, Bounds for eigenforms on arithmetic hyperbolic 3-manifolds, Duke Mathematical Journal 165 (2016), 625–659.MathSciNetCrossRefGoogle Scholar
  5. [BHMM]
    V. Blomer, G. Harcos, P. Maga and D. Milićević, The sup-norm problem for GL(2) over number fields, Journal of the European Mathematical Society, to appear, arXiv:1605.09360Google Scholar
  6. [BH]
    V. Blomer and R. Holowinsky, Bounding sup-norms of cusp forms of large level, Inventiones Mathematicae 179 (2010), 645–681.MathSciNetCrossRefGoogle Scholar
  7. [BM]
    V. Blomer and P. Maga, Subconvexity for sup-norms of cusp forms on PGL(n), Selecta Mathematica 22 (2016), 1269–1287.MathSciNetCrossRefGoogle Scholar
  8. [BP]
    V. Blomer and A. Pohl, The sup-norm problem on the Siegel modular space of rank two, American Journal of Mathematics 136 (2016), 999–1027.MathSciNetCrossRefGoogle Scholar
  9. [Br1]
    F. Brumley, Second order average estimates on local data of cusp forms, Archiv der Mathematik 87 (2006), 19–32.MathSciNetCrossRefGoogle Scholar
  10. [Br2]
    F. Brumley, Effective multiplicity one on GLN and narrow zero-free regions for Rankin-Selberg L-functions, American Journal of Mathematics 128 (2006), 1455–1474.MathSciNetCrossRefGoogle Scholar
  11. [BT]
    F. Brumley and N. Templier, Large values of cusp forms on GLn, arXiv:1411.4317Google Scholar
  12. [Bu]
    D. Bump, Automorphic Forms on GL(3, R), Lecture Notes in Mathematics, Vol. 1083, Springer, Berlin, 1984.CrossRefGoogle Scholar
  13. [Go]
    D. Goldfeld, Automorphic Forms and L-functions for the Group GL(n, R), Cambridge Studies in Advanced Mathematics, Vol. 99, Cambridge University Press, Cambridge, 2006.zbMATHGoogle Scholar
  14. [GR]
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Elsevier/Academic Press, Amsterdam, 2015.zbMATHGoogle Scholar
  15. [HM]
    G. Harcos and P. Michel, The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. II, Inventiones Mathematicae 163 (2006), 581–655.MathSciNetCrossRefGoogle Scholar
  16. [He]
    S. Helgason, Geometric Analysis on Symmetric Spaces, Mathematical Surveys and Monographs, Vol. 39, American Mathematical Society, Providence, RI, 2008.Google Scholar
  17. [HRR]
    R. Holowinsky, G. Ricotta and E. Royer, On the sup-norm of SL3 Hecke-Maass cusp form, arXiv:1404.3622Google Scholar
  18. [Hö]
    L. Hörmander, The spectral function of an elliptic operator, Acta Mathematica 121 (1968), 193–218.MathSciNetCrossRefGoogle Scholar
  19. [IS]
    H. Iwaniec and P. Sarnak, L∞ norms of eigenfunctions of arithmetic surfaces, Annals of Mathematics 141 (1995), 301–320.Google Scholar
  20. [JS]
    H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I, American Journal of Mathematics 103 (1981), 499–558.MathSciNetCrossRefGoogle Scholar
  21. [La]
    E. Lapid, On the Harish-Chandra Schwartz space of G(F)G(A), in Automorphic Representations and L-functions, Tata Institute of Fundamental Research Studies in Mathematics, Vol. 22, Tata Institute of Fundamental Research, Mumbai, 2013, pp. 335–377.Google Scholar
  22. [Li]
    X. Li, Upper bounds on L-functions at the edge of the critical strip, International Mathematics Research Notices 4 (2010), 727–755.MathSciNetzbMATHGoogle Scholar
  23. [Ra]
    D. Ramakrishnan, An exercise concerning the selfdual cusp forms on GL(3), Indian Journal of Pure and Applied Mathematics 45 (2014), 777–785.MathSciNetCrossRefGoogle Scholar
  24. [RW]
    D. Ramakrishnan and S. Wang, On the exceptional zeros of Rankin–Selberg Lfunctions, Compositio Mathematica 135 (2003), 211–244.MathSciNetCrossRefGoogle Scholar
  25. [Sah1]
    A. Saha, Large values of newforms on GL(2) with highly ramified central character, International Mathematics Research Notices 13 (2016), 4103–4131.MathSciNetCrossRefGoogle Scholar
  26. [Sah2]
    A. Saha, Hybrid sup-norm bounds for Maass newforms of powerful level, Algebra & Number Theory 11 (2017), 1009–1045.MathSciNetCrossRefGoogle Scholar
  27. [Sar]
    P. Sarnak, Letter to Cathleen Morawetz, August 2004, available at http://publications.ias.edu/sarnakGoogle Scholar
  28. [St1]
    E. Stade, On explicit integral formulas for GL(n,R)-Whittaker functions, Duke Mathematical Journal 60 (1990), 313–362.MathSciNetCrossRefGoogle Scholar
  29. [St2]
    E. Stade, Mellin transforms of GL(n, R) Whittaker functions, American Journal of Mathematics 123 (2001), 121–161.MathSciNetCrossRefGoogle Scholar
  30. [VT]
    I. Vinogradov and L. Takhtadzhyan, Theory of Eisenstein Series for the group SL(3, R) and its application to a binary problem, Journal of Soviet Mathematics 18 (1982), 293–324.zbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  1. 1.Mathematisches InstitutGeorg-August Universität GöttingenGöttingenGermany
  2. 2.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary
  3. 3.Central European UniversityBudapestHungary

Personalised recommendations