Nonlinear Loewy factorizable algebraic ODEs and Hayman’s conjecture
Article
First Online:
- 44 Downloads
Abstract
In this paper, we introduce certain n-th order nonlinear Loewy factorizable algebraic ordinary differential equations for the first time and study the growth of their meromorphic solutions in terms of the Nevanlinna characteristic function. It is shown that for generic cases all their meromorphic solutions are elliptic functions or their degenerations and hence their order of growth is at most two. Moreover, for the second order factorizable algebraic ODEs, all their meromorphic solutions (except for one case) are found explicitly. This allows us to show that a conjecture proposed by Hayman in 1996 holds for these second order ODEs.
Preview
Unable to display preview. Download preview PDF.
References
- [1]M. J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher’s equation for a special wave speed, Bulletin of Mathematical Biology 41 (1979), 835–840.MathSciNetCrossRefzbMATHGoogle Scholar
- [2]S. B. Bank, Some results on analytic and meromorphic solutions of algebraic differential equations, Advances in Mathematics 15 (1975), 41–61.MathSciNetCrossRefzbMATHGoogle Scholar
- [3]K. F. Barth, D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bulletin of the London Mathematical Society 16 (1984), 490–517.MathSciNetCrossRefzbMATHGoogle Scholar
- [4]N. Basu, S. Bose and T. Vijayaraghavan, A simple example for a theorem of Vijayaraghavan, Journal of the London Mathematical Society 12 (1937), 250–252.CrossRefzbMATHGoogle Scholar
- [5]E. Borel, Mémoire sur les séries divergentes, Annales Scientifiques de l’école Normale Supérieure 16 (1899), 9–131.CrossRefzbMATHGoogle Scholar
- [6]Y. M. Chiang and R. G. Halburd, On the meromorphic solutions of an equation of Hayman, Journal of Mathematical Analysis and Applications 281 (2003), 663–677.MathSciNetCrossRefzbMATHGoogle Scholar
- [7]C. T. Chuang and C. C. Yang, Fix-points and Factorization Theory of Meromorphic Functions, World Scientific, Teaneck, NJ, 1990.zbMATHGoogle Scholar
- [8]R. Conte, The Painlevé approach to nonlinear ordinary differential equations, in The Painlevé Property, CRM Series in Mathematical Physics, Springer, New York, 1999, pp. 77–180.CrossRefGoogle Scholar
- [9]R. Conte, A. P. Fordy and A. Pickering, A perturbative Painlevé approach to nonlinear differential equations, Physica D. Nonlinear Phenomena 69 (1993), 33–58.MathSciNetCrossRefzbMATHGoogle Scholar
- [10]R. Conte and T. W. Ng, Meromorphic solutions of a third order nonlinear differential equation, Journal of Mathematical Physics 51 (2010), 033518.MathSciNetCrossRefzbMATHGoogle Scholar
- [11]R. Conte, T. W. Ng and C. F. Wu, Hayman’s classical conjecture on some nonlinear second-order algebraic ODEs, Complex Variables and Elliptic Equations 60 (2015), 1539–1552.MathSciNetCrossRefzbMATHGoogle Scholar
- [12]O. Cornejo-Pérez and H. Rosu, Nonlinear second order ode’s: Factorizations and particular solutions, Progress of Theoretical Physics 114 (2005), 533–538.MathSciNetCrossRefzbMATHGoogle Scholar
- [13]G. Darboux, Sur les équations aux dérivées partielles, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 96 (1883), 766–769.zbMATHGoogle Scholar
- [14]A. E. Eremenko, Meromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation, Journal of Mathematical Physics, Analysis, Geometry 2 (2006), 278–286.MathSciNetzbMATHGoogle Scholar
- [15]A. E. Eremenko, L. Liao and T. W. Ng, Meromorphic solutions of higher order Briot-Bouquet differential equations, Mathematical Proceedings of the Cambridge Philosophical Society 146 (2009), 197–206.MathSciNetCrossRefzbMATHGoogle Scholar
- [16]R. Fowler, Some results on the form near infinity of real continuous solutions of a certain type of second-order differential equation, Proceedings of the London Mathematical Society 13 (1914), 341–371.MathSciNetCrossRefGoogle Scholar
- [17]P. Gallagher, Some algebraic differential equations with few transcendental solutions, Journal of Mathematical Analysis and Applications 428 (2015), 717–734.MathSciNetCrossRefzbMATHGoogle Scholar
- [18]A. A. Gol’dberg, On one-valued integrals of differential equations of the first order, Ukraininskiĭ Matematičeskiĭ Žurnal 8 (1956), 254–261.MathSciNetGoogle Scholar
- [19]R. G. Halburd and J. Wang, All admissible meromorphic solutions of Hayman’s equation, International Mathematics Research Notices 18 (2015), 8890–8902.MathSciNetCrossRefzbMATHGoogle Scholar
- [20]G. H. Hardy, Some results concerning the behavior at infinity of a real and continuous solution of an algebraic differential equation of the first order, Proceedings of the London Mathematical Society 10 (1912), 451–468.MathSciNetCrossRefzbMATHGoogle Scholar
- [21]W. K. Hayman, The growth of solutions of algebraic differential equations, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Serie IX. Matematica e Applicazioni 7 (1996), 67–73.MathSciNetzbMATHGoogle Scholar
- [22]E. L. Ince, Ordinary Differential Equations, Dover, New York, 1944.zbMATHGoogle Scholar
- [23]L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bulletin of Mathematics 22 (1998), 385–405.MathSciNetzbMATHGoogle Scholar
- [24]A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Vestnik Moskovskogo Universiteta 1 (1937), 1–25.Google Scholar
- [25]N. A. Kudryashov, Meromorphic solutions of nonlinear ordinary differential equations, Communications in Nonlinear Science and Numerical Simulation 15 (2010), 2778–2790.MathSciNetCrossRefzbMATHGoogle Scholar
- [26]I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, Vol. 15, Walter de Gruyter, Berlin, 1993.CrossRefzbMATHGoogle Scholar
- [27]I. Laine, Complex differential equations, in Ordinary Differential Equations Handbook of Differential Equations, Vol. 4, Elsevier/North-Holland, Amsterdam, 2008, pp. 269–363.CrossRefGoogle Scholar
- [28]E. Lindelöf, Sur la croissance des intégrales des équations différentielles algébrique du premier order, Bulletin de la Société Mathématique de France 27 (1899), 205–215.MathSciNetCrossRefzbMATHGoogle Scholar
- [29]A. Loewy, Uber vollständig reduzible lineare homogene Differentialgleichungen, Mathematische Annalen 56 (1906), 89–117.CrossRefzbMATHGoogle Scholar
- [30]P. Painlevé, Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, Bulletin de la Société Mathématique de France 28 (1900), 201–261.MathSciNetCrossRefzbMATHGoogle Scholar
- [31]L. A. Rubel, Some research problems about algebraic differential equations II, Illinois Journal of Mathematics 36 (1992), 659–680.MathSciNetzbMATHGoogle Scholar
- [32]F. Schwarz, Loewy Decomposition of Linear Differential Equations, Texts and Monographs in Symbolic Computation, Springer, Vienna, 2012.Google Scholar
- [33]F. Schwarz, Loewy decomposition of linear differential equations, Bulletin of Mathematical Sciences 3 (2013), 19–71.MathSciNetCrossRefzbMATHGoogle Scholar
- [34]S. P. Tsarev, Factorization of linear partial differential operators and the Darboux method for integrating nonlinear partial differential equations, Theoretical and Mathematical Physics 122 (2000), 121–133.MathSciNetCrossRefGoogle Scholar
- [35]T. Vijayaraghavan, Sur la croissance des fonctions définies par les équations différentielles, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 194 (1932), 827–829.zbMATHGoogle Scholar
Copyright information
© Hebrew University of Jerusalem 2018