Advertisement

Israel Journal of Mathematics

, Volume 226, Issue 1, pp 475–503 | Cite as

Quantum actions on discrete quantum spaces and a generalization of Clifford’s theory of representations

  • Kenny De CommerEmail author
  • Paweł Kasprzak
  • Adam Skalski
  • Piotr M. Sołtan
Article
  • 24 Downloads

Abstract

To any action of a compact quantum group on a von Neumann algebra which is a direct sum of factors we associate an equivalence relation corresponding to the partition of a space into orbits of the action. We show that in case all factors are finite-dimensional (i.e., when the action is on a discrete quantum space) the relation has finite orbits. We then apply this to generalize the classical theory of Clifford, concerning the restrictions of representations to normal subgroups, to the framework of quantum subgroups of discrete quantum groups, itself extending the context of closed normal quantum subgroups of compact quantum groups. Finally, a link is made between our equivalence relation in question and another equivalence relation defined by R. Vergnioux.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ban99]
    T. Banica, Symmetries of a generic coaction, Mathematische Annalen 314 (1999), 763–780.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Boc95]
    F. P. Boca, Ergodic actions of compact matrix pseudogroups on C*-algebras, Astérisque 232 (1995), 93–109.MathSciNetzbMATHGoogle Scholar
  3. [CDPR14]
    L. S. Cirio, A. D’Andrea, C. Pinzari and S. Rossi, Connected components of compact matrix quantum groups and finiteness conditions, Journal of Functional Analysis 267 (2014), 3154–3204.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Cli37]
    A. H. Clifford, Representations induced in an invariant subgroup, Annals of Mathematics 38 (1937), 533–550.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [CSST09]
    T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Clifford theory and applications, Journal of Mathematical Sciences (New York) 156 (2009), 29–43.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [DC17]
    K. De Commer, Actions of compact quantum groups, in Toplogical Quantum Groups, Banach Center Publications, Vol. 111, Polish Academy of Sciences Institute of Mathematics, Warsaw, 2017, pp. 33–100.Google Scholar
  7. [DCFY14]
    K. De Commer, A. Freslon and M. Yamashita, CCAP for universal discrete quantum groups, Communications in Mathematical Physics 331 (2014), 677–701.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [DKSS12]
    M. Daws, P. Kasprzak, A. Skalski and P. M. Sołtan, Closed quantum subgroups of locally compact quantum groups, Advances in Mathematics 231 (2012), 3473–3501.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Fim10]
    P. Fima, Kazhdan’s property T for discrete quantum groups, International Journal of Mathematics 21 (2010), 47–65.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Hua16]
    H. Huang, Invariant subsets under compact quantum group actions, Journal of Noncommutative Geometry 10 (2016), 447–469.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [KKS16]
    M. Kalantar, P. Kasprzak and A. Skalski, Open quantum subgroups of locally compact quantum groups, Advances in Mathematics 303 (2016), 322–359.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [KKSS17]
    M. Kalantar, P. Kasprzak, A. Skalski and P. Sołtan, Induction for locally compact quantum groups revisited, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, to appear.Google Scholar
  13. [KS14]
    P. Kasprzak and P. Sołtan, Quantum groups with projection and extensions of locally compact quantum groups, Journal of Noncommutative Geometry.Google Scholar
  14. [KSS17]
    P. Kasprzak, A. Skalski and P. Sołtan, The canonical central exact sequence for locally compact quantum groups, Mathematische Nachrichten 290 (2017), 1303–1316.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Kus02]
    J. Kustermans, Induced corepresentations of locally compact quantum groups, Journal of Functional Analysis 194 (2002), 410–459.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [KV00]
    J. Kustermans and S. Vaes, Locally compact quantum groups, Annales Scientifiques de l’école Normale Superieure 33 (2000), 837–934.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Mey08]
    R. Meyer, Homological algebra in bivariant K-theory and other triangulated categories. II, Tbilisi Mathematical Journal 1 (2008), 165–210.MathSciNetzbMATHGoogle Scholar
  18. [Pat13]
    I. Patri, Normal subgroups, center and inner automorphisms of compact quantum groups, International Journal of Mathematics 24 (2013), 1350071, 37.MathSciNetzbMATHGoogle Scholar
  19. [Ped79]
    G. K. Pedersen, C*-algebras and their Automorphism Groups, London Mathematical Society Monographs, Vol. 14, Academic Press, Harcourt Brace Jovanovich, London–New York, 1979.Google Scholar
  20. [Pod95]
    P. Podleś, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups, Communications in Mathematical Physics 170 (1995), 1–20.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [PW90]
    P. Podleś and S. L. Woronowicz, Quantum deformation of Lorentz group, Communications in Mathematical Physics 130 (1990), 381–431.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [Vae01]
    S. Vaes, The unitary implementation of a locally compact quantum group action, Journal of Functional Analysis 180 (2001), 426–480.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Vae05]
    S. Vaes, A new approach to induction and imprimitivity results, Journal of Functional Analysis 229 (2005), 317–374.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Ver05]
    R. Vergnioux, Orientation of quantum Cayley trees and applications, Journal für die Reine und Angewandte Mathematik 580 (2005), 101–138.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Voi11]
    C. Voigt, The Baum–Connes conjecture for free orthogonal quantum groups, Advances in Mathematics 227 (2011), 1873–1913.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [VV03]
    S. Vaes and L. Vainerman, Extensions of locally compact quantum groups and the bicrossed product construction, Advances in Mathematics 175 (2003), 1–101.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [VV13]
    R. Vergnioux and C. Voigt, The K-theory of free quantum groups, Mathematische Annalen 357 (2013), 355–400.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [Wan95]
    S. Wang, Free products of compact quantum groups, Communications in Mathematical Physics 167 (1995), 671–692.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [Wan98]
    S. Wang, Quantum symmetry groups of finite spaces, Communications in Mathematical Physics 195 (1998), 195–211.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Wan09]
    S. Wang, Simple compact quantum groups. I, Journal of Functional Analysis 256 (2009), 3313–3341.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [Wan14]
    S. Wang, Equivalent notions of normal quantum subgroups, compact quantum groups with properties F and FD, and other applications, Journal of Algebra 397 (2014), 515–534.zbMATHGoogle Scholar
  32. [Wor87]
    S. L. Woronowicz, Compact matrix pseudogroups, Communications in Mathematical Physics 111 (1987), 613–665.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [Wor96]
    S. L. Woronowicz, From multiplicative unitaries to quantum groups, International Journal of Mathematics 7 (1996), 127–149.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [Wor98]
    S. L. Woronowicz, Compact quantum groups, in Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, pp. 845–884.Google Scholar

Copyright information

© Hebrew University of Jerusalem 2018

Authors and Affiliations

  • Kenny De Commer
    • 1
    Email author
  • Paweł Kasprzak
    • 2
  • Adam Skalski
    • 3
  • Piotr M. Sołtan
    • 2
  1. 1.Vakgroep WiskundeVrije Universiteit BrusselBrusselBelgium
  2. 2.Department of Mathematical Methods in Physics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  3. 3.Institute of Mathematics of the Polish Academy of SciencesWarsawPoland

Personalised recommendations