Skip to main content
Log in

Abstract

We observe a subadditivity property for the noise sensitivity of subsets of Gaussian space. For subsets of volume 1/2, this leads to an almost trivial proof of Borell’s Isoperimetric Inequality for ρ = cos( π/2ℓ), ℓ ∈ N. Rotational sensitivity also easily gives the Gaussian Isoperimetric Inequality for volume-1/2 sets and a.8787-factor UG-hardness for Max-Cut (within 10−4 of the optimum). As another corollary we show the Hermite tail bound \(||{f^{ > k}}||_2^2 \geqslant \Omega (Var[f]).\frac{1}{{\sqrt k }}for:{R^n} \to \{ - 1,1\} \). Combining this with the Invariance Principle shows the same Fourier tail bound for any Boolean f: {−1, 1}n → {−1, 1} with all its noisy-influences small, or more strongly, that a Boolean function with tail weight smaller than this bound must be close to a junta. This improves on a result of Bourgain, where the bound on the tail weight was only \(\frac{1}{{{k^{1/2 + o(1)}}}}\) . We also show a simplification of Bourgain’s proof that does not use Invariance and obtains the bound \(\frac{1}{{\sqrt k {{\log }^{1.5}}k}}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Ambrosio, A. Figalli and E. Runa, On sets of finite perimeter inWiener spaces: reduced boundary and convergence to halfspaces, Atti della Accademia Nazionale dei Lincei. Rendictoni Lincei. Matematica e Applicazioni 24 (2013), 111–122.

    Article  MATH  Google Scholar 

  2. W. Beckner, Sobolev inequalities, the Poisson semigroup, and analysis on the sphere sn, Proceedings of the National Academy of Sciences of the United States of America 89 (1992), 4816–4819.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Bobkov and C. Houdré, Some Connections between Isoperimetric and Sobolevtype Inequalities, Memoirs of the American Mathematical Society 129 (1997).

  4. C. Borell, The Brunn–Minkowski inequality in Gauss space, Inventiones Mathematicae 30 (1975), 207–216.

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Borell, On polynomial chaos and integrability, Probabability and Mathematical Statistics 3 (1984), 191–203.

    MathSciNet  MATH  Google Scholar 

  6. C. Borell, Geometric bounds on the Ornstein–Uhlenbeck velocity process, Probability Theory and Related Fields 70 (1985), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bourgain, On the distribution of the Fourier spectrum of Boolean functions, Israel Journal of Mathematics 131 (2002), 269–276.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Carlen and M. Loss, Extremals of functionals with competing symmetries, Journal of Functional Analysis 88 (1990), 437–456.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the ACM 42 (1995), 1115–1145.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Kalai, A Fourier-theoretic perspective on the Condorcet paradox and Arrow’s theorem, Advances in Applied Mathematics 29 (2002), 412–426.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Kane, The Gaussian surface area and noise sensitivity of degree-d polynomial threshold functions, Computational Complexity 20 (2011), 389–412.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Kane, On Elliptic Curves, the ABC Conjecture, and Polynomial Threshold Functions, PhD thesis, Harvard University, 2011.

    Google Scholar 

  13. S. Khot, On the power of unique 2-prover 1-round games, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 767–775.

    MATH  Google Scholar 

  14. S. Khot, G. Kindler, E. Mossel and R. O’Donnell, Optimal inapproximability results for Max-Cut and other 2-variable CSPs?, SIAM Journal on Computing 37 (2007), 319–357.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Khot and A. Naor, Nonembeddability theorems via Fourier analysis, Mathematische Annalen 334 (2006), 821–852.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Klivans, R. O’Donnell and R. Servedio, Learning geometric concepts via Gaussian surface area, in Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA, 2008, pp. 541–550.

    Google Scholar 

  17. W. Krakowiak and J. Szulga, Hypercontraction principle and random multilinear forms, Probability Theory and Related Fields 77 (1988), 325–342.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Khot and N. Vishnoi, The Unique Games Conjecture, integrality gap for cut problems and embeddability of negative type metrics into ℓ1, Journal of the ACM 62 (2015), Art. 8.

  19. M. Ledoux, Isoperimetry and Gaussian analysis, in Lectures on Probability Theory and Statistics (Saint-Flour 1994), Lecture Notes in Mathematics, Vol. 1648, Springer, Berlin, 1996, pp. 165–294.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Ledoux, Personal communication, 2006.

    Google Scholar 

  21. E. Mossel, R. O’Donnell and K. Oleszkiewicz, Noise stability of functions with low influences: invariance and optimality Annals of Mathematics 171 (2010), 295–341.

    Google Scholar 

  22. M. Miranda, D. Pallara, F. Paronetto and M. Preunkert, Short-time heat flow and functions of bounded variation in RN, Annales de la Faculté des Sciences de Toulouse. Mathématiques 16 (2007), 125–145.

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Sheppard, On the application of the theory of error to cases of normal distribution and normal correlation, Philosophical Transactions of the Royal Society of London. Series A 192 (1899), 101–167, 531.

    Article  MATH  Google Scholar 

  24. V. Sudakov and B. Tsirel’son, Extremal properties of half-spaces for spherically invariant measures, Journal of Soviet Mathematics 9 (1978), 9–18; originally published in Zapiski Naučnyh Seminarov Leningradskogo Otdelenija Matematičeskogo Instituta im A. M. Steklova 41 (1974), 14–21, 165.

    Article  MATH  Google Scholar 

  25. M. Talagrand, How much are increasing sets positively correlated?, Combinatorica 16 (1996), 243–258.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Kindler.

Additional information

Supported by the Koshland fellowship and by the Binational Science Foundation (BSF) grant no. 2008477.

Supported by NSF grants CCF-0747250 and CCF-0915893, and by a Sloan fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kindler, G., Kirshner, N. & O’Donnell, R. Gaussian noise sensitivity and Fourier tails. Isr. J. Math. 225, 71–109 (2018). https://doi.org/10.1007/s11856-018-1646-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1646-8

Navigation