Israel Journal of Mathematics

, Volume 222, Issue 1, pp 431–462 | Cite as

Seas of squares with sizes from a Π 1 0 set

  • Linda Brown WestrickEmail author


For each Π1 0 S ⊆ N, let the S-square shift be the two-dimensional subshift on the alphabet {0, 1} whose elements consist of squares of 1s of various sizes on a background of 0s, where the side length of each square is in S. Similarly, let the distinct-square shift consist of seas of squares such that no two finite squares have the same size. Extending the self-similar Turing machine tiling construction of [6], we show that if X is an S-square shift or any effectively closed subshift of the distinct square shift, then X is sofic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Aubrun and M. Sablik, Simulation of effective subshifts by two-dimensional subshifts of finite type, Acta Appl. Math. 126 (2013), 35–63.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc. No. 66 (1966), 72.zbMATHMathSciNetGoogle Scholar
  3. [3]
    E. M. Coven and M. E. Paul, Sofic systems, Israel J. Math. 20 (1975), 165–177.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    A. Desai, Subsystem entropy for Zd sofic shifts, Indag. Math. (N.S.) 17 (2006), 353–359.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    B. Durand, L. A. Levin and A. Shen, Complex tilings, J. Symbolic Logic 73 (2008), 593–613.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    B. Durand, A. Romashchenko and A. Shen, Fixed-point tile sets and their applications, J. Comput. System Sci. 78 (2012), 731–764.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    P. Hertling and C. Spandl, Computability theoretic properties of the entropy of gap shifts, Fund. Inform. 83 (2008), 141–157.zbMATHMathSciNetGoogle Scholar
  8. [8]
    M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems, Invent. Math. 176 (2009), 131–167.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Ann. of Math. (2) 171 (2010), 2011–2038.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995.CrossRefzbMATHGoogle Scholar
  11. [11]
    R. Pavlov, Approximating the hard square entropy constant with probabilistic methods, Ann. Probab. 40 (2012), 2362–2399.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    R. Pavlov, A class of nonsofic multidimensional shift spaces, Proc. Amer. Math. Soc. 141 (2013), 987–996.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12 (1971), 177–209.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    A. Y. Rumyantsev and M. A. Ushakov, Forbidden substrings, Kolmogorov complexity and almost periodic sequences, in STACS 2006, Lecture Notes in Comput. Sci., Vol. 3884, Springer, Berlin, 2006, pp. 396–407.Google Scholar
  15. [15]
    S. G. Simpson, Medvedev degrees of two-dimensional subshifts of finite type, Ergodic Theory Dynam. Systems 34 (2014), 679–688.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    R. I. Soare, Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987, A study of computable functions and computably generated sets.Google Scholar
  17. [17]
    H. Wang, Proving theorems by pattern recognition II, Bell System Tech. J. 40 (1961), 1–42.CrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations