Advertisement

Israel Journal of Mathematics

, Volume 221, Issue 2, pp 731–739 | Cite as

Simple polytopes without small separators

  • Lauri Loiskekoski
  • Günter M. Ziegler
Article

Abstract

We show that by cutting off the vertices and then the edges of neighborly cubical polytopes, one obtains simple 4-dimensional polytopes with n vertices such that all separators of the graph have size at least Ω(n/log3/2 n). This disproves a conjecture by Kalai from 1991/2004.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. M. Bayer and L. J. Billera, Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets, Inventiones Math. 79 (1985), 143–157.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    B. Bollobas, Combinatorics, Cambridge University Press, Cambridge, 1986.zbMATHGoogle Scholar
  3. [3]
    G. Ewald and G. C. Shephard, Stellar subdivisions of boundary complexes of convex polytopes, Math. Annalen 210 (1974), 7–16.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combinatorial Theory 1 (1966), 385–393.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L. H. Harper, Global methods for combinatorial isoperimetric problems, Cambridge University Press, Cambridge, 2004.CrossRefzbMATHGoogle Scholar
  6. [6]
    M. Joswig and G. M. Ziegler, Neighborly cubical polytopes, Discrete Comput. Geometry (Grünbaum Festschrift: G. Kalai and V. Klee, eds.) 24 (2000), 325–344.Google Scholar
  7. [7]
    G. Kalai, The diameter of graphs of convex polytopes and f-vector theory, in Applied Geometry and Discrete Mathematics — The Victor Klee Festschrift (P. Gritzmann and B. Sturmfels, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 4, Amer. Math. Soc., Providence, RI, 1991, pp. 387–411.CrossRefGoogle Scholar
  8. [8]
    G. Kalai, Polytope skeletons and paths, in Handbook of Discrete and Computational Geometry (J. E. Goodman and J. O’Rourke, eds.), CRC Press, Boca Raton, second ed., 2004, First edition 1997, pp. 455–476.Google Scholar
  9. [9]
    R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Applied Math. 36 (1979), 177–189.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    G. L. Miller, S.-H. Teng, W. Thurston and S. A. Vavasis, Separators for sphere-packings and nearest neighbor graphs, J. ACM 44 (1997), 1–29.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    G. L. Miller and W. Thurston, Separators in two and three dimensions, in Proc. 22nd Ann. ACM Symp. Theory Computing (Baltimore MD, May 1990) (New York), ACM, pp. 300–309.Google Scholar
  12. [12]
    R. Sanyal and G. M. Ziegler, Construction and analysis of projected deformed products, Discrete Comput. Geometry 43 (2010), 412–435.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Spencer and L. Florescu, Asymptopia, Student Math. Library, Vol. 71, Amer. Math. Soc., Providence, RI, 2014.Google Scholar

Copyright information

© Hebrew University of Jerusalem 2017

Authors and Affiliations

  1. 1.Institut für MathematikFU BerlinBerlinGermany

Personalised recommendations