Advertisement

Israel Journal of Mathematics

, Volume 214, Issue 1, pp 109–120 | Cite as

Polynomial recurrence with large intersection over countable fields

  • Vitaly Bergelson
  • Donald Robertson
Article

Abstract

We give a short proof of polynomial recurrence with large intersection for additive actions of finite-dimensional vector spaces over countable fields on probability spaces, improving upon the known size and structure of the set of strong recurrence times.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BD08]
    V. Bergelson and T. Downarowicz, Large sets of integers and hierarchy of mixing properties of measure preserving systems, Colloquium Mathematicum 110 (2008), 117–150.MathSciNetCrossRefMATHGoogle Scholar
  2. [Ber03]
    V. Bergelson, Minimal idempotents and ergodic Ramsey theory, in Topics in Dynamics and Ergodic Theory, London Mathematical Society Lecture Note Series, Vol. 310, Cambridge University Press, Cambridge, 2003, pp. 8–39.MathSciNetMATHGoogle Scholar
  3. [Ber10]
    V. Bergelson, Ultrafilters, IP sets, dynamics, and combinatorial number theory, in Ultrafilters Across Mathematics, Contemporary Mathematics, Vol. 530, American Mathematical Society, Providevce, RI, 2010, pp. 23–47.MathSciNetCrossRefMATHGoogle Scholar
  4. [BH90]
    V. Bergelson and N. Hindman, Nonmetrizable topological dynamics and Ramsey theory, Transactions of the American Mathematical Society 320 (1990), 293–320.MathSciNetCrossRefMATHGoogle Scholar
  5. [BH94]
    V. Bergelson and N. Hindman, On IP * sets and central sets, Combinatorica 14 (1994), 269–277.MathSciNetCrossRefMATHGoogle Scholar
  6. [BLM05]
    V. Bergelson, A. Leibman and R. McCutcheon, Polynomial Szemerédi theorems for countable modules over integral domains and finite fields, Journal d’Analyse Mathématique 95 (2005), 243–296.MathSciNetCrossRefMATHGoogle Scholar
  7. [BR15]
    V. Bergelson and D. Robertson, Polynomial multiple recurrence over rings of integers, Ergodic Theory and Dynamical Systems, 2015, http://dx.doi.org/10.1017/etds.2014.138.Google Scholar
  8. [FK85]
    H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for IP-systems and combinatorial theory, Journal d’Analyse Mathématique 45 (1985), 117–168.MathSciNetCrossRefMATHGoogle Scholar
  9. [FW78]
    H. Furstenberg and B. Weiss, Topological dynamics and combinatorial number theory, Journal d’Analyse Mathématique 34 (1978), 61–85.MathSciNetCrossRefMATHGoogle Scholar
  10. [Hin74]
    N. Hindman, Finite sums from sequences within cells of a partition of N, Journal of Combinatorial Theory. Series A 17 (1974), 1–11.MathSciNetCrossRefMATHGoogle Scholar
  11. [HJ63]
    A. W. Hales and R. I. Jewett, Regularity and positional games, Transactions of the American Mathematical Society 106 (1963), 222–229.MathSciNetCrossRefMATHGoogle Scholar
  12. [HS12]
    N. Hindman and D. Strauss, Algebra in the Stone–Cech Compactification, Walter de Gruyter, Berlin, 2012.MATHGoogle Scholar
  13. [Lar98]
    P. G. Larick, Results in polynomial recurrence for actions of fields, PhD thesis, Ohio State University, Colombus, Ohio, 1998.Google Scholar
  14. [McC14]
    R. McCutcheon, Private communication, 2014.Google Scholar
  15. [MW14]
    R. McCutcheon and A. Windsor, D sets and a Sárközy theorem for countable fields, Israel Journal of Mathematics 201 (2014), 123–146.MathSciNetGoogle Scholar
  16. [MZ14]
    R. McCutcheon and J. Zhou, D sets and IP rich sets in Z, Fundamenta Mathematicae, 233 (2016), 71–82.MathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2016

Authors and Affiliations

  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations