# A problem of Erdős and Sós on 3-graphs

Article

First Online:

Received:

Revised:

- 96 Downloads
- 5 Citations

## Abstract

We show that for every *ɛ* > 0 there exist *δ* > 0 and *n* _{0} ∈ ℕ such that every 3-uniform hypergraph on *n* ≥ *n* _{0} vertices with the property that every *k*-vertex subset, where *k* ≥ *δn*, induces at least \(\left( {\frac{1}
{2} + \varepsilon } \right)\left( {\begin{array}{*{20}c}
k \\
3 \\
\end{array} } \right)\) edges, contains *K* _{4} ^{−} as a subgraph, where *K* _{4} ^{−} is the 3-uniform hypergraph on 4 vertices with 3 edges. This question was originally raised by Erdős and Sós. The constant 1/4 is the best possible.

## Keywords

Convergent Sequence Edge Density Dense Graph Extremal Graph Subgraph Frequency
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- [1]N. Alon and J. Spencer,
*The Probabilistic Method*, 3rd Edition, Wiley-Interscience in Descrete Mathematics and Optimization, Wiley, Hoboken, NJ, 2008.CrossRefMATHGoogle Scholar - [2]R. Baber and J. Talbot,
*Hypergraphs do jump*, Combinatorics, Probability and Computing**20**(2011), 161–171.MathSciNetCrossRefMATHGoogle Scholar - [3]R. Baber and J. Talbot,
*New Turán densities for*3*-graphs*, Electronic Journal of Combinatorics**19**(2012), #P22.MathSciNetMATHGoogle Scholar - [4]V. Bhat and V. Rödl,
*Note on upper density of quasi-random hypergraphs*, preprint.Google Scholar - [5]B. Borchers,
*CSDP, a C library for semidefinite programming*, Optimization Methods and Software**11/12**(1999), 613–623.MathSciNetCrossRefMATHGoogle Scholar - [6]C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi,
*Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing*, Advances in Mathematics**219**(2008), 1801–1851.MathSciNetCrossRefMATHGoogle Scholar - [7]C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi,
*Convergent sequences of dense graphs II: Multiway cuts and statistical physics*, Annals of Mathematics**176**(2012), 151–219.MathSciNetCrossRefMATHGoogle Scholar - [8]G. Elek and B. Szegedy,
*A measure theoretic approach to the theory of dense hypergraphs*, preprint.Google Scholar - [9]P. Erdős,
*Problems and results on graphs and hypergraphs: Similarities and differences*, in*Mathematics of Ramsey Theory*, Algorithms and Combinatorics, Vol. 5, Springer- Verlag, Berlin, 1990, pp. 223–233.Google Scholar - [10]P. Erdős and A. Hajnal,
*On Ramsey like theorems. Problems and results*, in*Combinatorics (Proceedings of the Conference on Combinatorial Mathematics held at the Mathematical Institute, Oxford, 1972)*, Institute of Mathematics and Its Applications, Southend-on-Sea, 1972, pp. 123–140.Google Scholar - [11]P. Erdős and M. Simonovits,
*An extremal graph problem*, Acta Mathematica Academiae Scientiarum Hungaricae**22**(1971), 275–282.MathSciNetCrossRefMATHGoogle Scholar - [12]P. Erdős and V. T. Sós,
*On Ramsey-Turán type theorems for hypergraphs*, Combinatorica**2**(1982), 289–295.MathSciNetCrossRefMATHGoogle Scholar - [13]P. Erdős and A. H. Stone,
*On the structure of linear graphs*, Bulletin of the American Mathematical Society**52**(1946), 1089–1091.MathSciNetMATHGoogle Scholar - [14]V. Falgas-Ravry, O. Pikhurko and E. R. Vaughan,
*The codegree density of K - 4*, in preparation.Google Scholar - [15]V. Falgas-Ravry and E. R. Vaughan,
*Applications of the semi-definite method to the Turán density problem for*3-*graphs*, Combinatorics, Probability and Computing**22**(2013), 21–54.MathSciNetCrossRefMATHGoogle Scholar - [16]V. Falgas-Ravry and E. R. Vaughan,
*Turán H-densities for*3*-graphs*, Electronic Journal of Combinatorics**19**(2012), #P40.MathSciNetMATHGoogle Scholar - [17]P. Frankl and Z. Füredi,
*An exact result for*3*-graphs*, Discrete Mathematics**50**(1984), 323–328.MathSciNetCrossRefMATHGoogle Scholar - [18]P. Frankl and V. Rödl,
*Some Ramsey-Turán type results for hypergraphs*, Combinatorica**8**(1988), 323–332.MathSciNetCrossRefMATHGoogle Scholar - [19]L. Lovász and B. Szegedy,
*Limits of dense graph sequences*, Journal of Combinatorial Theory, Series B**96**(2006), 933–957.MathSciNetCrossRefMATHGoogle Scholar - [20]O. Pikhurko,
*The minimum size of*3*-graphs without a*4*-set spanning no or exactly three edges*, European Journal of Combinatorics**32**(2011), 1142–1155.MathSciNetCrossRefMATHGoogle Scholar - [21]A. Razborov,
*Flag algebras*, Journal of Symbolic Logic**72**(2007), 1239–1282.MathSciNetCrossRefMATHGoogle Scholar - [22]A. Razborov,
*On*3*-hypergraphs with forbidden*4*-vertex configurations*, SIAM Journal on Discrete Mathematics**24**(2010), 946–963.MathSciNetCrossRefMATHGoogle Scholar - [23]A. Razborov,
*On the Fon-der-Flaass interpretation of extremal examples for Turánś*(3, 4)*-problem*, Proceedings of the Steklov Institute of Mathematics**274**(2011), 247–266.MathSciNetCrossRefMATHGoogle Scholar - [24]
- [25]V. Rödl,
*On universality of graphs with uniformly distributed edges*, Discrete Mathematics**59**(1986), 125–134.MathSciNetCrossRefMATHGoogle Scholar - [26]V. Rödl, private communication, 2013.Google Scholar
- [27]W. A. Stein et al.,
*Sage Mathematics Software (Version 5.4.1)*, The Sage Development Team, 2012, http://www.sagemath.org. - [28]M. Simonovits,
*A method for solving extremal problems in graph theory, stability problems*, in*Theory of Graphs (Proceedings of the Colloquium held at Tihany, 1966)*, Academic Press, New York, 1968, pp. 279–319.Google Scholar - [29]M. Simonovits and V. T. Sós,
*Ramsey-Turán theory*, Discrete Mathematics**229**(2001), 293–340.MathSciNetCrossRefMATHGoogle Scholar - [30]V. T. Sós,
*On extremal problems in graph theory*, in*Combinatorial Structures and their Applications (Proceedings of the Calgary International Conference, Calgary, Alta., 1969*, Gordon and Breach, New York, 1970, pp. 407–410.Google Scholar - [31]P. Turán,
*Eine Extremalaufgabe aus der Graphentheorie*(in Hungarian), Matematikaiés Fizikai Lapok**48**(1941), 436–452; see also:*On the theory of graphs*, Colloquium Mathematicum**3**(1954), 19–30.Google Scholar - [32]A. Tychonoff,
*Über die topologische Erweiterung von Räumen*(in German), Mathematische Annalen**102**(1930), 544–561.MathSciNetCrossRefMATHGoogle Scholar - [33]J. Volec,
*Analytic methods in combinatorics*, Ph.D. thesis, University of Warwick and Université Paris Diderot (2014).Google Scholar

## Copyright information

© Hebrew University of Jerusalem 2016