Advertisement

Israel Journal of Mathematics

, Volume 205, Issue 1, pp 127–143 | Cite as

Algebrability and nowhere Gevrey differentiability

  • F. BastinEmail author
  • J. A. Conejero
  • C. Esser
  • J. B. Seoane-Sepúlveda
Article

Abstract

We show that there exist c-generated algebras (and dense in C ([0, 1])) every nonzero element of which is a nowhere Gevrey differentiable function. This leads to results of dense algebrability (and, therefore, lineability) of functions enjoying this property. In the process of proving these results we also provide a new construction of nowhere Gevrey differentiable functions.

Keywords

American Mathematical Society Topological Vector Space Free Algebra Separable Banach Space Gevrey Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. M. Aron, F. J. García-Pacheco, D. Pérez-García and J. B. Seoane-Sepúlveda, On dense-lineability of sets of functions on ℝ, Topology 48 (2009), 149–156.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    R. M. Aron, V. I. Gurariy and J. B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on ℝ, Proceedings of the American Mathematical Society 133 (2005), 795–803.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    R. M. Aron, D. Pérez-García and J. B. Seoane-Sepúlveda, Algebrability of the set of non-convergent Fourier series, Studia Mathematica 175 (2006), 83–90CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    R. M. Aron and J. B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on ℂ, Bulletin of the Belgian Mathematical Society. Simon Stevin 14 (2007), 25–31.zbMATHMathSciNetGoogle Scholar
  5. [5]
    M. Balcerzak, A. Bartoszewicz and M. Filipczak, Nonseparable spaceability and strong algebrability of sets of continuous singular functions, Journal of Mathematical Analysis and Applications 407 (2013), 263–269.CrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Bartoszewicz, M. Bienias, M. Filipczak and S. G_lşab, Exponential-like function method in strong c-algebrability, arXiv:1307.0331.Google Scholar
  7. [7]
    A. Bartoszewicz and S. Głşab, Strong algebrability of sets of sequences and functions, Proceedings of the American Mathematical Society 141 (2013), 827–835.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    A. Bartoszewicz and S. Głşab, Additivity and lineability in vector spaces, Linear Algebra and its Applications 439 (2013), 2123–2130.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    F. Bastin, C. Esser and S. Nicolay, Prevalence of “nowhere analyticity”, Studia Mathematica 210 (2012), 239–246.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    F. Bayart and L. Quarta, Algebras in sets of queer functions, Israel Journal of Mathematics 158 (2007), 285–296.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    L. Bernal-González, Lineability of sets of nowhere analytic functions, Journal of Mathematical Analysis and Applications 340 (2008), 1284–1295.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    L. Bernal-González, Algebraic genericity of strict-order integrability, Studia Mathematica 199 (2010), 279–293.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    L. Bernal-González, D. Pellegrino and J. B. Seoane-Sepúlveda, Linear subsets of nonlinear sets in topological vector spaces, Bulletin of the American Mathematical Society (N.S.) 51 (2014), 71–130, DOI: http://dx.doi.org/ 10.1090/S0273-0979-2013-01421-6.CrossRefzbMATHGoogle Scholar
  14. [14]
    G. Botelho, D. Cariello, V. V. Fávaro and D. Pellegrino, Maximal spaceability in sequence spaces, Linear Algebra and its Applications 437 (2012), 2978–2985.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    G. Botelho, D. Cariello, V. V. Fávaro, D. Pellegrino and J. B. Seoane-Sepúlveda, Distinguished subspaces of L p of maximal dimension, Studia Mathematica 215 (2013), 261–280.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [16]
    G. Botelho, D. Cariello, V. V. Fávaro, D. Pellegrino and J. B. Seoane-Sepúlveda, On very non-linear subsets of continuous functions, Quarterly Journal of Mathematics (2013), in press. doi:10.1093/qmath/hat043.Google Scholar
  17. [17]
    S.-Y. Chung and J. Chung, There exist no gaps between Gevrey differentiable and nowhere Gevrey differentiable, Proceedings of the American Mathematical Society 133 (2005), 859–863 (electronic).CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    J. A. Conejero, P. Jiménez-Rodríguez, G. A. Muñoz-Fernández and J. B. Seoane-Sepúlveda, When the Identity Theorem “seems” to fail, American Mathematical Monthly 121 (2014), 60–68.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    P. H. Enflo, V. I. Gurariy and J. B. Seoane-Sepúlveda, Some results and open questions on spaceability in function spaces, Transactions of the American Mathematical Society 366 (2014), 611–625. DOI: http://dx.doi.org/ 10.1090/S0002-9947-2013-05747-9.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    V. P. Fonf, V. I. Gurariy and M. I. Kadets, An infinite-dimensional subspace of C[0, 1]consisting of nowhere differentiable functions, Comptes Rendus de l’Académie Bulgare des Sciences 52 (1999), 13–16.zbMATHMathSciNetGoogle Scholar
  21. [21]
    D. García, B. C. Grecu, M. Maestre and J. B. Seoane-Sepúlveda, Infinite dimensional Banach spaces of functions with nonlinear properties, Mathematische Nachrichten 283 (2010), 712–720.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    F. J. García-Pacheco, M. Martín and J. B. Seoane-Sepúlveda, Lineability, spaceability, and algebrability of certain subsets of function spaces, Taiwanese Journal of Mathematics 13 (2009), 1257–1269.zbMATHMathSciNetGoogle Scholar
  23. [23]
    V. I. Gurariy, Subspaces and bases in spaces of continuous functions, Dokladi Akademii Nauk SSSR 167 (1966), 971–973.Google Scholar
  24. [24]
    V. I. Gurariy and L. Quarta, On lineability of sets of continuous functions, Journal of Mathematical Analysis and Applications 294 (2004), 62–72.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    S. Hencl, Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions, Proceedings of the American Mathematical Society 128 (2000), 3505–3511.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces, Bulletin of the American Mathematical Society 27 (1992), 217–238.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    B. Levine and D. Milman, On linear sets in space C consisting of functions of bounded variation, Comm. Inst. Sci. Math. Méc. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4) 16 (1940), 102–105.MathSciNetGoogle Scholar
  28. [28]
    D. Morgenstern, Unendlich oft differenzierbare nicht-analytische Funktionen, Mathematische Nachrichten 12 (1954), 74.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    L. Rodríguez-Piazza, Every separable Banach space is isometric to a space of continuous nowhere differentiable functions, Proceedings of the American Mathematical Society 123 (1995), 3649–3654.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    R. L. Wheeden and A. Zygmund, Measure and Integral, Pure and Applied Mathematics, Vol. 43, Marcel Dekker, New York, 1977.zbMATHGoogle Scholar
  31. [31]
    T. Yamanaka, A new higher order chain rule and Gevrey class, Annals of Global Analysis and Geometry 7 (1989), 179–203.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2015

Authors and Affiliations

  • F. Bastin
    • 1
    Email author
  • J. A. Conejero
    • 2
  • C. Esser
    • 1
  • J. B. Seoane-Sepúlveda
    • 3
  1. 1.Institute of Mathematics B37University of LiègeLiègeBelgium
  2. 2.Instituto Universitario de Matemática Pura y AplicadaUniversitat Politècnica de ValènciaValènciaSpain
  3. 3.Facultad de Matemáticas, Departamento de Análisis MatemáticoUniversidad Complutense de MadridMadridSpain

Personalised recommendations