Israel Journal of Mathematics

, Volume 204, Issue 1, pp 359–371 | Cite as

On the p-length of some finite p-soluble groups

  • Adolfo Ballester-Bolinches
  • Ramón Esteban-Romero
  • Luis M. Ezquerro
Article

Abstract

The main aim of this paper is to give structural information of a finite group of minimal order belonging to a subgroup-closed class of finite groups and whose p-length is greater than 1, p a prime number. Alternative proofs and improvements of recent results about the influence of minimal p-subgroups on the p-nilpotence and p-length of a finite group arise as consequences of our study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, Products of Finite Groups, de Gruyter Expositions in Mathematics, Vol. 53, Walter de Gruyter, Berlin, 2010.CrossRefMATHGoogle Scholar
  2. [2]
    A. Ballester-Bolinches, R. Esteban-Romero and L. M. Ezquerro, On a p-Schur-Frattini extension of a finite group, preprint.Google Scholar
  3. [3]
    A. Ballester-Bolinches, L. M. Ezquerro and A. N. Skiba, On subgroups of hypercentral type of finite groups, Israel Journal of Mathematics 199 (2014), 259–265.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    A. Ballester-Bolinches and X. Guo, Some results on p-nilpotence and solubility of finite groups, Journal of Algebra 228 (2000), 491–496.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    K. Doerk and T. Hawkes, Finite Soluble Groups, de Gruyter Expositions in Mathematics, Vol. 4, Walter de Gruyter, Berlin, 1992.CrossRefMATHGoogle Scholar
  6. [6]
    The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.5.7, 2012.Google Scholar
  7. [7]
    J. González-Sánchez and T. S. Weigel, Finite p-central groups of height k, Israel Journal of Mathematics 181 (2011), 125–143.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    D. Gorenstein, Finite Groups, Harper & Row, New York, 1968.MATHGoogle Scholar
  9. [9]
    B. Huppert, Endliche Gruppen I, Grundlehren der Mathematischen Wissenschaften, Vol. 134, Springer-Verlag, Berlin-Heidelberg-New York, 1967.MATHGoogle Scholar
  10. [10]
    B. Huppert and N. Blackburn, Finite Groups II, Grundlehren der Mathematischen Wissenschaften, Vol. 242, Springer-Verlag, Berlin-Heidelberg-New York, 1982.MATHGoogle Scholar
  11. [11]
    B. Huppert and N. Blackburn, Finite Groups III, Grundlehren der Mathematischen Wissenschaften, Vol. 243, Springer-Verlag, Berlin-Heidelberg-New York, 1982.MATHGoogle Scholar
  12. [12]
    T. S. Weigel, Finite p-groups which determine p-nilpotency locally, Hokkaido Mathematical Journal 411 (2012), 11–29.MathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2014

Authors and Affiliations

  • Adolfo Ballester-Bolinches
    • 1
  • Ramón Esteban-Romero
    • 2
  • Luis M. Ezquerro
    • 3
  1. 1.Departament d’ÀlgebraUniversitat de ValènciaBurjassot, ValènciaSpain
  2. 2.Institut Universitari de Matemàtica Pura i AplicadaUniversitat Politècnica de ValènciaValènciaSpain
  3. 3.Departamento de MatemáticasUniversidad Pública de NavarraPamplona, NavarraSpain

Personalised recommendations