Advertisement

Israel Journal of Mathematics

, Volume 197, Issue 1, pp 131–137 | Cite as

De Rham theorem for Schwartz functions on Nash manifolds

Article
  • 123 Downloads

Abstract

In [2] the authors proved the de Rham theorem for Schwartz functions on affine Nash manifolds. Here we simplify the proof and generalize their result to the case of non-affine Nash manifolds.

Keywords

Schwartz Function Dual Complex Constant Sheaf Injective Object Nash Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Aizenbud and D. Gourevitch, Schwartz functions on Nash manifolds, International Mathematics Research Notices. IMRN 5 (2008), article ID rnm 155.Google Scholar
  2. [2]
    A. Aizenbud and D. Gourevitch, The de Rham theorem and Shapiro lemma for Schwartz functions on Nash manifolds, Israel Journal of Mathematics 177 (2010), 155–188.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 36, Springer-Verlag, Berlin, 1998.MATHGoogle Scholar
  4. [4]
    W. Casselman, H. Hecht and D. Miličić, Bruhat filtrations and Whittaker vectors for real groups, in The Mathematical Legacy of Harish-Chandra (Baltimore, 1998), Proceedings of Symposia in Pure Mathematics, Vol. 68, American Mathematical Society, Providence, RI, 2000, pp. 151–190.CrossRefGoogle Scholar
  5. [5]
    M. Edmundo and L. Prelli, Sheaves on T-topologies, arXiv:1002.0690v2.Google Scholar
  6. [6]
    A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs of the American Mathematical Society 16 (1955).Google Scholar
  7. [7]
    M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren der Mathematischen Weissenschaften, Vol. 292, Springer-Verlag, Berlin, 1990.CrossRefMATHGoogle Scholar
  8. [8]
    M. Kashiwara and P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mémoires de la Société Mathématique de France 64 (1996).Google Scholar
  9. [9]
    M. Kashiwara and P. Schapira, Ind-sheaves, Astérisque 271 (2001).Google Scholar
  10. [10]
    M. Shiota, Nash Manifolds, Lecture Notes in Mathematics, Vol. 1269, Springer-Verlag, Berlin, 1987.MATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2013

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità dugli Studi di PadovePadovaItaly

Personalised recommendations