Israel Journal of Mathematics

, Volume 196, Issue 1, pp 295–319 | Cite as

Clique complexes and graph powers

Article

Abstract

We study the behaviour of clique complexes of graphs under the operation of taking graph powers. As an example we compute the clique complexes of powers of cycles, or, in other words, the independence complexes of circular complete graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. A. Barmak, Star clusters in independence complexes of graphs, arxiv/1007.0418.Google Scholar
  2. [2]
    C. Bachoc, A. Pêcher and A. Thiéry, On the theta number of powers of cycle graphs, arxiv/1103.0444.Google Scholar
  3. [3]
    A. Björner, Topological methods, in Handbook of Combinatorics, (R. Graham, M. Grötschel and L. Lovász, eds.), North-Holland, Amsterdam, 1995, pp. 1819–1872.Google Scholar
  4. [4]
    R. Boulet, E. Fieux and B. Jouve, Simplicial simple-homotopy of flag complexes in terms of graphs, European Journal of Combinatorics 31 (2010), 161–176.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    B. Braun, Independence complexes of stable Kneser graphs, Electronic Journal of Combinatorics 18 (2011), paper 118.Google Scholar
  6. [6]
    A. E. Brouwer, P. Duchet and A. Schrijver, Graphs whose neighbourhoods have no special cycles, Discrete Mathematics 47 (1983), 177–182.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    J. Brown and R. Hoshino, Independence polynomials of circulants with an application to music, Discrete Mathematics 309 (2009), 2292–2304.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    A. Dochtermann, The universality of Hom complexes of graphs, Combinatorica 29 (2009), 433–448.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    R. Forman, Morse theory for cell complexes, Advances in Mathematics 134 (1998), 90–145.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    R. Forman, A user’s guide to discrete Morse theory, Séminaire Lotharingien de Combinatoire 48 (2002), article B48c.MathSciNetGoogle Scholar
  11. [11]
    R. Hoshino, Independence polynomials of circulant graphs, PhD. Thesis, Dalhouse University, 2007.Google Scholar
  12. [12]
    D. Kozlov, Complexes of directed trees, Journal of Combinatorial Theory. Series A 88 (1999), 112–122.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    D. Kozlov, Combinatorial Algebraic Topology, Algorithms and Computation in Mathematics, Vol. 21, Springer-Verlag, Berlin-Heidelberg, 2008.CrossRefMATHGoogle Scholar
  14. [14]
    F. Larrión, M. A. Pizaña and R. Villarroel-Flores, The fundamental group of the clique graph, European Journal of Combinatorics 30 (2009), 288–294.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    J. P. May, Weak equivalences and quasifibrations, in Groups of Self-equivalences and Related Topics (R. Piccinini, ed.), Lecture Notes in Mathematics, Vol. 1425, Springer-Verlag, Berlin, 1990, pp. 91–101.CrossRefGoogle Scholar
  16. [16]
    M. C. McCord, Singular homology groups and homotopy groups of finite topological spaces, Duke Mathematical Journal 33 (1966), 465–474.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    R. Motwani and M. Sudan, Computing roots of graphs is hard, Discrete Applied Mathematics 54 (1994), 81–88.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    M. Muzychuk, A solution of the isomorphism problem for circulant graphs, Proceedings of the London Mathematical Society 88 (2004), 1–41.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2013

Authors and Affiliations

  1. 1.Mathematics Institute and DIMAPUniversity of WarwickCoventryUK

Personalised recommendations