Israel Journal of Mathematics

, Volume 195, Issue 2, pp 973–998 | Cite as

Quasisimple classical groups and their complex group algebras

Article

Abstract

Let H be a finite quasisimple classical group, i.e., H is perfect and S:= H/Z(H) is a finite simple classical group. We prove that, excluding the open cases when S has a very exceptional Schur multiplier such as PSL3(4) or PSU4(3), H is uniquely determined by the structure of its complex group algebra. The proofs make essential use of the classification of finite simple groups as well as the results on prime power character degrees and relatively small character degrees of quasisimple classical groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BCLP]
    M. Bianchi, D. Chillag, M. L. Lewis and E. Pacifici, Character degree graphs that are complete graphs, Proceedings of the American Mathematical Society 135 (2007), 671–676.MathSciNetCrossRefMATHGoogle Scholar
  2. [Brau]
    R. Brauer, Representations of finite groups, in Lectures on Modern Mathematics, Vol. I, Wiley, New York, 1963, pp. 133–175.Google Scholar
  3. [Car]
    R. W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, Wiley and Sons, New York, 1985.MATHGoogle Scholar
  4. [Atl]
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.MATHGoogle Scholar
  5. [Cur]
    C. W. Curtis, The Steinberg character of a finite group with a (B,N)-pair, Journal of Algebra 4 (1966), 433–441.MathSciNetCrossRefMATHGoogle Scholar
  6. [Dade]
    E. C. Dade, Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps, Mathematische Zeitschrift 119 (1971), 345–348.MathSciNetCrossRefMATHGoogle Scholar
  7. [GAP]
    The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4.12, 2008, http://www.gap-system.org.
  8. [Gur]
    R. M. Guralnick, Subgroups of prime power index in a simple group, Journal of Algebra 81 (1983), 304–311.MathSciNetCrossRefMATHGoogle Scholar
  9. [GuT]
    R. M. Guralnick and P. H. Tiep, Cross characteristic representations of even characteristic symplectic groups, Transactions of the American Mathematical Society 356 (2004), 4969–5023.MathSciNetCrossRefMATHGoogle Scholar
  10. [Har]
    M. E. Harris, A universal mapping problem, covering groups and automorphism groups of finite groups, The Rocky Mountain Journal of Mathematics 7 (1977), 289–295.MathSciNetCrossRefMATHGoogle Scholar
  11. [Haw]
    T. Hawkes, On groups having isomorphic group algebras, Journal of Algebra 167 (1994), 557–577.MathSciNetCrossRefMATHGoogle Scholar
  12. [Hup]
    B. Huppert, Some simple groups which are determined by the set of their character degrees I, Illinois Journal of Mathematics 44 (2000), 828–842.MathSciNetMATHGoogle Scholar
  13. [Isa]
    I. M. Isaacs, Recovering information about a group from its complex group algebra, Archiv der Mathematik 47 (1986) 293–295.MathSciNetCrossRefMATHGoogle Scholar
  14. [Kim]
    W. Kimmerle, Group rings of finite simple groups. Around group rings, Resenhas do Instituto de Matemática e Estatística da Universidad de São Paulo 5 (2002), 261–278.MathSciNetMATHGoogle Scholar
  15. [LOST]
    M. W. Liebeck, E. A. O’Brien, A. Shalev and P. H. Tiep, The Ore conjecture, Journal of the European Mathematical Socirty 12 (2010), 939–1008.MathSciNetCrossRefMATHGoogle Scholar
  16. [Lub]
    F. Lübeck, Data for finite groups of Lie type and related algebraic groups, http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/index.html
  17. [MaZ]
    G. Malle and A. E. Zalesskii, Prime power degree representations of quasi-simple groups, Archiv der Mathematik 77 (2001), 461–468.MathSciNetCrossRefMATHGoogle Scholar
  18. [MaK]
    V. D. Mazurov and E. I. Khukhro, Unsolved Problems in Group Theory, the Kourovka Notebook, 17th edition, Novosibirsk, 2010.Google Scholar
  19. [Mor]
    A. Moretó, Complex group algebras of finite groups: Brauer’s problem 1, Advances in Mathematics 208 (2007), 236–248.MathSciNetCrossRefMATHGoogle Scholar
  20. [Ng]
    H. N. Nguyen, Low-dimensional complex characters of the symplectic and orthogonal groups, Communications in Algebra 38 (2010), 1157–1197.MathSciNetCrossRefMATHGoogle Scholar
  21. [TZa]
    P. H. Tiep and A. E. Zalesskii, Minimal characters of the finite classical groups, Communications in Algebra 24 (1996), 2093–2167.MathSciNetCrossRefMATHGoogle Scholar
  22. [Ton1]
    H. P. Tong-Viet, Simple exceptional groups of Lie type are determined by their character degrees, Monatshefte für Mathematik 166 (2012), 559–577.MathSciNetCrossRefMATHGoogle Scholar
  23. [Ton2]
    H. P. Tong-Viet, Alternating and Sporadic simple groups are determined by their character degrees, Algebras and Representation Theory 15 (2012), 379–389.MathSciNetCrossRefMATHGoogle Scholar
  24. [Ton3]
    H. P. Tong-Viet, Simple classical groups are determined by their character degrees, Journal of Algebra 357 (2012), 61–68.MathSciNetCrossRefMATHGoogle Scholar
  25. [Zsi]
    K. Zsigmondy, Zue theorie der potenzreste, Monatshefte für Mathematik und Physik 3 (1892), 265–284.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2013

Authors and Affiliations

  1. 1.Department of MathematicsThe University of AkronAkronUSA

Personalised recommendations