Israel Journal of Mathematics

, Volume 192, Issue 1, pp 449–472 | Cite as

On the packing dimension of the Julia set and the escaping set of an entire function

Article

Abstract

Let f be a transcendental entire function. We give conditions which imply that the Julia set and the escaping set of f have packing dimension 2. For example, this holds if there exists a positive constant c less than 1 such that the minimum modulus L(r, f) and the maximum modulus M(r, f) satisfy log L(r, f) ≤ c logM(r, f) for large r. The conditions are also satisfied if logM(2r, f) ≥ d logM(r, f) for some constant d greater than 1 and all large r.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. M. Anderson and V. Ya. Eiderman, Cauchy transforms of point masses: the logarithmic derivative of polynomials, Annals of Mathematics 163 (2006), 1057–1076.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    I. N. Baker, Wandering domains in the iteration of entire functions, Proceedings of the London Mathematical Society 49 (1984), 563–576.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    K. Barański, Hausdorff dimension of hairs and ends for entire maps of finite order, Mathematical Proceedings of the Cambridge Philosophical Society 145 (2008), 719–737.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    K. Barański, B. Karpiñska and A. Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, International Mathematics Research Notices 4 (2009), 615–624.Google Scholar
  5. [5]
    W. Bergweiler, Iteration of meromorphic functions, Bulletin of the American Mathematical Society 29 (1993), 151–188.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    W. Bergweiler, A new proof of the Ahlfors five islands theorem, Journal d’Analyse Mathématique 76 (1998), 337–347.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Revista Matemática Iberoamericana 11 (1995), 355–373.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    W. Bergweiler and B. Karpińska, On the Hausdorff dimension of the Julia set of a regularly growing entire function, Mathematical Proceedings of the Cambridge Philosophical Society 148 (2010), 531–551.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    W. Bergweiler, B. Karpińska and G. M. Stallard, The growth rate of an entire function and the Hausdorff dimension of its Julia set, Journal of the London Mathematical Society 80 (2009), 680–698.MATHCrossRefGoogle Scholar
  10. [10]
    W. Bergweiler, P. J. Rippon and G. M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, Proceedings of the London Mathematical Society 97 (2008), 368–400.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    W. Bergweiler, P. J. Rippon and G. M. Stallard, Multiply connected wandering domains of entire functions, preprint, arXiv 1109:1794.Google Scholar
  12. [12]
    W. Cherry and Z. Ye, Nevanlinna’s Theory of Value Distribution. The Second Main Theorem and its Error Terms, Springer-Verlag, Berlin, 2001.MATHGoogle Scholar
  13. [13]
    I. E. Chyzhykov, An addition to the cos πρ-theorem for subharmonic and entire functions of zero lower order, Proceedings of the American Mathematical Society 130 (2002), 517–528.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    A. E. Eremenko, On the iteration of entire functions, in Dynamical Systems and Ergodic Theory, Banach Center Publications, Vol. 23, Polish Scientific Publishers, Warsaw, 1989, pp. 339–345.Google Scholar
  15. [15]
    A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Université de Grenoble. Annales de l’Institut Fourier 42 (1992), 989–1020.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990.MATHGoogle Scholar
  17. [17]
    P. C. Fenton, The infimum of small subharmonic functions, Proceedings of the American Mathematical Society 78 (1980), 43–47.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Translations of Mathematical Monographs, Vol. 236, American Mathematical Society, Providence, RI, 2008.MATHGoogle Scholar
  19. [19]
    W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.MATHGoogle Scholar
  20. [20]
    W. K. Hayman, Subharmonic Functions, Vol. 2, London Mathematical Society Monographs, Vol. 20, Academic Press, London, 1989.Google Scholar
  21. [21]
    A. Hinkkanen, Julia sets of polynomials are uniformly perfect, Bulletin of the London Mathematical Society 26 (1994), 153–159.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    J. K. Langley, On the multiple points of certain meromorphic functions, Proceedings of the American Mathematical Society 123 (1995), 1787–1795.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    A. J. Macintyre and W. H. J. Fuchs, Inequalities for the logarithmic derivatives of a polynomial, Journal of the London Mathematical Society 15 (1940), 162–168.MathSciNetCrossRefGoogle Scholar
  24. [24]
    C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Transactions of the American Mathematical Society 300 (1987), 329–342.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    C. T. McMullen, Complex Dynamics and Renormalization, Annals of Mathematics Studies, Vol. 135, Princeton University Press, Princeton, NJ, 1994.Google Scholar
  26. [26]
    T. Ransford, Potential Theory in the Complex Plane, London Mathematical Society Student Texts, Vol. 28, Cambridge University Press, Cambridge, 1995.MATHCrossRefGoogle Scholar
  27. [27]
    L. Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions, Proceedings of the American Mathematical Society 137 (2009), 1411–1420.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    L. Rempe and G. M. Stallard, Hausdorff dimensions of escaping sets of transcendental entire functions, Proceedings of the American Mathematical Society 138 (2010), 1657–1665.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    P. J. Rippon and G. M. Stallard, Escaping points of meromorphic functions with a finite number of poles, Journal d’Analyse Mathématique 96 (2005), 225–245.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    P. J. Rippon and G. M. Stallard, Dimensions of Julia sets of meromorphic functions, Journal of the London Mathematical Society 71 (2005), 669–683.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    P. J. Rippon and G. M. Stallard, Dimensions of Julia sets of meromorphic functions with finitely many poles, Ergodic Theory and Dynamical Systems 26 (2006), 525–538MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    P. J. Rippon and G. M. Stallard, Slow escaping points of meromorphic functions, Transactions of the American Mathematical Society 363 (2011) 4171–4201.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    P. J. Rippon and G. M. Stallard, Fast escaping points of entire functions, Proceedings of the London Mathematical Society, to appearGoogle Scholar
  34. [34]
    H. Schubert, Über die Hausdorff-Dimension der Juliamenge von Funktionen endlicher Ordnung, Dissertation, University of Kiel, 2007.Google Scholar
  35. [35]
    G. M. Stallard, The Hausdorff dimension of Julia sets of entire functions, Ergodic Theory and Dynamical Systems 11 (1991), 769–777.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    G. M. Stallard, Dimensions of Julia sets of transcendental meromorphic functions, in Transcendental Dynamics and Complex Analysis, London Mathematical Society Lecture Note Series, Vol. 348, Cambridge University Press, Cambridge, 2008, pp. 425–446.MATHGoogle Scholar
  37. [37]
    J. H. Zheng, On multiply-connected Fatou components in iteration of meromorphic functions, Journal of Mathematical Analysis and Applications 313 (2006), 24–37.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2012

Authors and Affiliations

  1. 1.Mathematisches SeminarChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations