Israel Journal of Mathematics

, Volume 191, Issue 2, pp 545–557 | Cite as

Loop subgroups of Fr and the image of their stabilizer subgroups in GLr(ℤ)

Article
  • 148 Downloads

Abstract

For a representative class of subgroups of Fr, the image of their stabilizer subgroup under the action of Aut(Fr) in GLr(ℤ) is calculated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. D. Dixon, The probability of generating the symmetric group, Mathematische Zeitschrift 110 (1969), 199–205.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    J. S. Ellenberg and D. B. McReynolds, Arithmetic Veech sublattices of SL(2, ℤ), Duke Mathematical Journal, to appear. http://arxiv.org/abs/0909.1851.
  3. [3]
    M. Finster, A series of coverings of the regular n-gon, Geometriae Dedicata, to appear. http://www.springerlink.com/content/x503604186216n62.
  4. [4]
    R. Gilman, Finite quotients of the automorphism group of a free group, Canadian Journal of Mathematics 29 (1977), 541–551.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    P. Hubert and S. Lelièvre, Noncongruence subgroups in H(2), International Mathematics Research Notices 2005:1 (2005), 47–64.MATHCrossRefGoogle Scholar
  6. [6]
    G. Schmithüsen, An algorithm for finding the Veech group of an origami, Experimental Mathematics 13 (2004), 459–472.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    G. Schmithüsen, Veech groups of origamis, Ph.D. thesis, Universität Karlsruhe (TH), 2005.Google Scholar
  8. [8]
    B. Sury, The Congruence Subgroup Problem, Hindustan Book Agency, New Delhi, 2003.MATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2011

Authors and Affiliations

  1. 1.Karlsruher Institut für Technologie (KIT)Institut für Algebra und GeometrieKarlsruheGermany

Personalised recommendations