Israel Journal of Mathematics

, Volume 191, Issue 2, pp 545–557 | Cite as

Loop subgroups of F r and the image of their stabilizer subgroups in GL r (ℤ)

  • Joachim BreitnerEmail author


For a representative class of subgroups of F r , the image of their stabilizer subgroup under the action of Aut(F r ) in GL r (ℤ) is calculated.


Congruence Subgroup Elementary Matrice Translation Surface Left Coset Congruence Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. D. Dixon, The probability of generating the symmetric group, Mathematische Zeitschrift 110 (1969), 199–205.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    J. S. Ellenberg and D. B. McReynolds, Arithmetic Veech sublattices of SL(2, ℤ), Duke Mathematical Journal, to appear.
  3. [3]
    M. Finster, A series of coverings of the regular n-gon, Geometriae Dedicata, to appear.
  4. [4]
    R. Gilman, Finite quotients of the automorphism group of a free group, Canadian Journal of Mathematics 29 (1977), 541–551.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    P. Hubert and S. Lelièvre, Noncongruence subgroups in H(2), International Mathematics Research Notices 2005:1 (2005), 47–64.zbMATHCrossRefGoogle Scholar
  6. [6]
    G. Schmithüsen, An algorithm for finding the Veech group of an origami, Experimental Mathematics 13 (2004), 459–472.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    G. Schmithüsen, Veech groups of origamis, Ph.D. thesis, Universität Karlsruhe (TH), 2005.Google Scholar
  8. [8]
    B. Sury, The Congruence Subgroup Problem, Hindustan Book Agency, New Delhi, 2003.zbMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2011

Authors and Affiliations

  1. 1.Karlsruher Institut für Technologie (KIT)Institut für Algebra und GeometrieKarlsruheGermany

Personalised recommendations