Israel Journal of Mathematics

, Volume 190, Issue 1, pp 29–66 | Cite as

On the syntomic regulator for K 1 of a surface

  • Amnon Besser


We consider elements of K 1(S), where S is a proper surface over a p-adic field with good reduction, which are given by a formal sum Σ(Z i , f i ) with Z i curves in S and f i rational functions on the Z i in such a way that the sum of the divisors of the f i is 0 on S. Assuming compatibility of pushforwards in syntomic and motivic cohomologies, our result computes the syntomic regulator of such an element, interpreted as a functional on H dR 2 (S), when evaluated on the cup product ω∪[η] of a holomorphic form ω by the first cohomology class of a form of the second kind η. The result is Σ i F η , log(f i ); F ω gl,Z i , where F ω and F η are Coleman integrals of ω and η, respectively, and the symbol in brackets is the global triple index, as defined in our previous work.


Cohomology Class Short Exact Sequence Cohomology Theory Chern Character Projection Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Baldassarri and P. Berthelot, On Dwork cohomology for singular hypersurfaces, in Geometric Aspects of Dwork Theory, Vols. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 177–244.Google Scholar
  2. [2]
    F. Baldassarri, M. Cailotto and L. Fiorot, Poincaré duality for algebraic de Rham cohomology, Manuscripta Mathematica 114 (2004), 61–116.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    A. A. Beilinson, Higher regulators and values of L-functions, Journal of Soviet Mathematics 30 (1985), 2036–2070.zbMATHCrossRefGoogle Scholar
  4. [4]
    A. A. Beilinson, Notes on absolute Hodge cohomology, in Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Parts I, II (Boulder, Colo., 1983), Contemporary Mathematics, Vol. 55, American Mathematical Society, Providence, RI, 1986, pp. 35–68.CrossRefGoogle Scholar
  5. [5]
    P. Berthelot, Dualité de Poincaré et formule de Künneth en cohomologie rigide, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique 325 (1997), 493–498.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Inventiones Mathematicae 128 (1997), 329–377, With an appendix in English by A. J. de Jong.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    A. Besser, A generalization of Coleman’s p-adic integration theory, Inventiones Mathematicae 142 (2000), 397–434.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    A. Besser, Syntomic regulators and p-adic integration I: rigid syntomic regulators, Israel Journal of Mathematics 120 (2000), 291–334.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    A. Besser, Syntomic regulators and p-adic integration II: K 2 of curves, Israel Journal of Mathematics 120 (2000), 335–360.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    A. Besser, Coleman integration using the Tannakian formalism, Mathematische Annalen 322 (2002), 19–48.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    A. Besser and R. de Jeu, The syntomic regulator for the K-theory of fields, Annales Scientifiques de l’École Normale Supérieure. Quatrième Série 36 (2003), 867–924.zbMATHCrossRefGoogle Scholar
  12. [12]
    A. Besser and R. de Jeu, The syntomic regulator for K 4 of curves, Algorithmic Number Theory (ANTS-IX), Lecture Notes in Computer Science 6197, Springer-Verlag, 2010, pp. 16–31.Google Scholar
  13. [13]
    S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift I (Boston), Progress in Mathematics, Vol. 86, Birkhäuser, Basel, 1990, pp. 333–400.Google Scholar
  14. [14]
    R. Bradshaw, J. Balakrishnan and K. Kedlaya, Cycle classes and the syntomic regulator, 2010,
  15. [15]
    B. Chiarellotto, A. Ciccioni and N. Mazzari, On rigid syntomic cohomology with compact support, preprint, 2010.Google Scholar
  16. [16]
    R. Coleman, Dilogarithms, regulators, and p-adic L-functions, Inventiones Mathematicae 69 (1982), 171–208.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    R. Coleman, Reciprocity laws on curves, Compositio Mathematica 72 (1989), 205–235.MathSciNetzbMATHGoogle Scholar
  18. [18]
    R. Coleman and E. de Shalit, p-adic regulators on curves and special values of p-adic L-functions, Inventiones Mathematicae 93 (1988), 239–266.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    M. Gros, Régulateurs syntomiques et valeurs de fonctions L p-adiques. II, Inventiones Mathematicae 115 (1994), 61–79.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    E. Grosse-Klönne, Rigid analytic spaces with overconvergent structure sheaf, Journal für die Reine und Angewandte Mathematik 519 (2000), 73–95.zbMATHCrossRefGoogle Scholar
  21. [21]
    I. Gutnik, Kedlays’s algorithm and Coleman integration, M.Sc. Thesis, Ben-Gurion University, 2006.Google Scholar
  22. [22]
    A. Langer, On the syntomic regulator for products of elliptic curves, Journal of the London Mathematical Society, to appear.Google Scholar
  23. [23]
    W. Nizioł, On the image of p-adic regulators, Inventiones Mathematicae 127 (1997), 375–400.zbMATHGoogle Scholar
  24. [24]
    V. Vologodsky, Hodge structure on the fundamental group and its application to p-adic integration, Moscow Mathematical Journal 3 (2003), 205–247.MathSciNetzbMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2011

Authors and Affiliations

  1. 1.Department of MathematicsBen-Gurion University of the NegevBe’er-ShevaIsrael

Personalised recommendations