Israel Journal of Mathematics

, Volume 190, Issue 1, pp 157–193 | Cite as

Generalized Thue-Morse sequences of squares

  • Michael DrmotaEmail author
  • Johannes F. Morgenbesser


We consider compact group generalizations T(n) of the Thue-Morse sequence and prove that the subsequence T(n 2) is uniformly distributed with respect to a measure gv that is absolutely continuous with respect to the Haar measure. The proof is based on a proper generalization of the Fourier based method of Mauduit and Rivat in their study of the sum-of-digits function of squares to group representations.


Normal Subgroup Irreducible Representation Compact Group Unitary Representation Automatic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Abou and P. Liardet, Flots chaînées, Proceedings of the sixth Congress of Romanian Mathematicians, Bucharest, 2007, Scientific Contributions (L. Beznea et al., eds.), Volume 1, Editura Academiei Române, Bucharest, 2009, pp. 401–432.Google Scholar
  2. [2]
    J.-P. Allouche and P. Liardet, Generalized Rudin-Shapiro sequences, Acta Arithmetica 60 (1991), 1–27.zbMATHMathSciNetGoogle Scholar
  3. [3]
    J.-P. Allouche and O. Salon, Sous-suites polynomiales de certaines suites automatiques, Journal de Théorie des Nombres de Bordeaux 5 (1993), 111–121.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge University Press, Cambridge, 2003.zbMATHCrossRefGoogle Scholar
  5. [5]
    B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, Wiley-Interscience, New York, 1998.Google Scholar
  6. [6]
    M. Drmota, P. J. Grabner and P. Liardet, Block additive functions on the Gaussian integers, Acta Arithmetica 135 (2008), 299–332.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    N. P. Fogg, Substitutions in Dynamics, Arithmetics and Combinatorics, in Volume 1794 of Lecture Notes in Mathematics (V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel, eds.), Springer-Verlag, Berlin, 2002.CrossRefGoogle Scholar
  8. [8]
    A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arithmetica 13 (1968), 259–265.zbMATHMathSciNetGoogle Scholar
  9. [9]
    E. Hlawka, Zur formalen Theorie der Gleichverteilung in kompakten Gruppen, Rendiconti del Circolo Matematico di Palermo. Serie II 4 (1955), 33–47.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience, New York, 1974.zbMATHGoogle Scholar
  11. [11]
    P. Liardet, Automata and generalized Rudin-Shapiro sequences, Arbeitsbericht Mathematisches Institut der Universität Salzburg 3–4 (1990), 21–52.Google Scholar
  12. [12]
    C. Mauduit, Multiplicative properties of the Thue-Morse sequence, Periodica Mathematica Hungarica 43 (2001), 137–153.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    C. Mauduit and J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Annals of Mathematics 171 (2010), 1591–1646.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    C. Mauduit and J. Rivat, La somme des chiffres des carrés, Acta Mathematica 203 (2009), 107–148.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Y. Moshe, On the subword complexity of Thue-Morse polynomial extractions, Theoretical Computer Science 389 (2007), 318–329.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2011

Authors and Affiliations

  1. 1.Institute of Discrete Mathematics and GeometryVienna University of TechnologyWienAustria

Personalised recommendations