Israel Journal of Mathematics

, Volume 190, Issue 1, pp 213–228 | Cite as

Lower bounds to helly numbers of line transversals to disjoint congruent balls

  • Otfried CheongEmail author
  • Xavier Goaoc
  • Andreas Holmsen


A line is a transversal to a family F of convex objects in ℝ d if it intersects every member of F. In this paper we show that for every integer d ⩾ 3 there exists a family of 2d−1 pairwise disjoint unit balls in ℝ d with the property that every subfamily of size 2d − 2 admits a transversal, yet any line misses at least one member of the family. This answers a question of Danzer from 1957. Crucial to the proof is the notion of a pinned transversal, which means an isolated point in the space of transversals. Here we investigate minimal pinning configurations and construct a family F of 2d−1 disjoint unit balls in ℝ d with the following properties: (i) The space of transversals to F is a single point and (ii) the space of transversals to any proper subfamily of F is a connected set with non-empty interior.


Line Transversal Empty Interior Disjoint Ball HELLY Number Common Transversal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Ambrus, A. Bezdek and F. Fodor, A Helly-type transversal theorem for n-dimensional unit balls, Archiv der Mathematik 86 (2006), 470–480.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    C. Borcea, X. Goaoc and S. Petitjean, Line transversals to disjoint balls, Discrete & Computational Geometry 1–3 (2008), 158–173.CrossRefMathSciNetGoogle Scholar
  3. [3]
    O. Cheong, X. Goaoc, A. Holmsen and S. Petitjean, Hadwiger and Helly-type theorems for disjoint unit balls, Discrete & Computatioanl Geometry 1–3 (2008), 194–212.CrossRefMathSciNetGoogle Scholar
  4. [4]
    L. Danzer, Über ein Problem aus der kombinatorischen Geometrie, Archiv der Mathematik 8 (1957), 347–351.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    L. Danzer, B. Grünbaum and V. Klee, Helly’s theorem and its relatives, in Convexity, Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, RI, 1963, pp. 101–180.Google Scholar
  6. [6]
    J. Eckhoff, Helly, Radon and Carathéodory type theorems, in Handbook of Convex Geometry, Vol. A, North-Holland, Amsterdam, 1993, pp. 389–448.Google Scholar
  7. [7]
    X. Goaoc, Some discrete properties of the space of line transversals to disjoint balls, in Non-Linear Computational Geometry, Springer, Berlin, 2008, pp. 51–83.Google Scholar
  8. [8]
    J. E. Goodman, R. Pollack and R. Wenger, Geometric transversal theory, in New Trends in Discrete and Computational Geometry, Vol. 10, Algorithms and Combinatorics, Springer, Berlin, 1993, 163–198.CrossRefGoogle Scholar
  9. [9]
    B. Grünbaum, On common transversals, Archiv für Mathematische Logik und Grundlagenforschung 9 (1958), 465–469.zbMATHGoogle Scholar
  10. [10]
    H. Hadwiger, Über Eibereiche mit gemeinsamer Treffgeraden, Portugaliae Mathematica 16 (1957), 23–29.zbMATHMathSciNetGoogle Scholar
  11. [11]
    A. Holmsen, M. Katchalski and T. Lewis, A Helly-type theorem for line transversals to disjoint unit balls, Discrete & Computational Geometry 29 (2003), 595–602.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. Holmsen and J. Matoušek, No Helly theorem for stabbing translates by lines ind, Discrete & Computational Geometry 31 (2004), 405–410.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Katchalski, A conjecture of Grünbaum on common transversals, Mathematica Scandinavica 59 (1986), 192–198.zbMATHMathSciNetGoogle Scholar
  14. [14]
    H. Pottmann and J. Wallner, Computational Line Geometry, Springer-Verlag, Heidelberg, Berlin, 2001.zbMATHGoogle Scholar
  15. [15]
    H. Tverberg, Proof of Grünbaum’s conjecture on common transversals, Discrete & Computational Geometry 4 (1989), 191–203.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    R. Wenger, Helly-type theorems and geometric transversals, in Handbook of Discrete & Computational Geometry, 2nd edition, CRC Press LLC, Boca Raton, 2004, pp. 73–96.Google Scholar

Copyright information

© Hebrew University Magnes Press 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceKAISTDaejeonSouth Korea
  2. 2.LORIA — INRIA Nancy Grand-Estvillers-lès-NancyFrance
  3. 3.Department of Mathematical SciencesKAISTDaejeonSouth Korea

Personalised recommendations