Advertisement

Degenerate principal series representations for quaternionic unitary groups

  • Shunsuke Yamana
Article

Abstract

We give a complete description of all points of reducibility and the composition series of the degenerate principal series representations for quaternionic unitary groups which are induced from a character of the maximal parabolic subgroup with abelian unipotent radical. The case of even orthogonal groups is also included.

Keywords

Parabolic Subgroup Hermitian Form Isotropic Subspace Maximal Parabolic Subgroup Weil Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    J. Alperin, Diagrams for modules, Journal of Pure and Applied Algebra 16 (1980), 111–119.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    D. Ban and C. Jantzen, The Langlands classification for non-connected p-adic groups, Israel Journal of Mathematics 126 (2001), 239–261.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    D. Ban and C. Jantzen, Degenerate principal series for even-orthogonal groups, Representation Theory 7 (2003), 440–480.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.Google Scholar
  5. [5]
    P. Feit, Poles and residues of Eisenstein series for symplectic and unitary groups, Memoirs of the American Mathematical Society 346 (1986), 1–89.MathSciNetGoogle Scholar
  6. [6]
    W. T. Gan and W. Tantono, The local Langlands conjecture for GSp(4) II: The case of inner forms, preprint.Google Scholar
  7. [7]
    R. Gustafson, The degenerate principal series for Sp(2n), Memoirs of the American Mathematical Society 248 (1981), 1–81.Google Scholar
  8. [8]
    M. Harris, S. Kudla and W. J. Sweet Jr., Theta dichotomy for unitary groups, Journal of the American Mathematical Society 9 (1996), 941–1004.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    R. Howe, Transcending classical invariant theory, Journal of the American Mathematical Society 2 (1989), 535–552.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    A. Ichino, A regularized Siegel-Weil formula for unitary groups, Mathematische Zeitschrift 247 (2004), 241–277.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    J. Igusa, Some results on p-adic complex powers, American Journal of Mathematics 106 (1984), 1013–1032.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    J. Igusa, On functional equations of complex powers, Inventiones Mathematicae 85 (1986), 1–29.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    C. Jantzen, Degenerate principal series for symplectic groups, Memoirs of the American Mathematical Society 488 (1986), 1–111.Google Scholar
  14. [14]
    C. Jantzen, Degenerate principal series for symplectic and odd-orthogonal groups, Memoirs of the American Mathematical Society 590 (1996), 1–100.MathSciNetGoogle Scholar
  15. [15]
    K. Johnson, Degenerate principal series and compact groups, Mathematische Annalen 287 (1990), 703–718.Google Scholar
  16. [16]
    K. Johnson, Degenerate principal series for tube type domains, Contemporary Mathematics 138, American Mathematical Society, Providence, RI, 1992, pp. 175–187.Google Scholar
  17. [17]
    M. Karel, Functional equations of Whittaker functions on p-adic groups, American Journal of Mathematics 101 (1979), 1303–1325.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    S. Kudla, Splitting metaplectic covers of dual reductive pairs, Israel Journal of Mathematics 84 (1994), 361–401.MathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Kudla and S. Rallis, Degenerate principal series and invariant distributions, Israel Journal of Mathematics 69 (1990), 25–45.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    S. Kudla and S. Rallis, Ramified degenerate principal series representations for Sp(n), Israel Journal of Mathematics 78 (1992), 209–256.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    S. Kudla and S. Rallis, A regularized Siegel-Weil formula: the first term identity, Annals of Mathematics. Second Series 140 (1994), 1–80.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    S. Kudla and S. Rallis, On first occurrence in the local theta correspondence, in Automorphic Representations, L-Functions and Applications: Progress and Prospects, de Gruyter, Berlin, 2005, pp. 273–308.CrossRefGoogle Scholar
  23. [23]
    S. Kudla and W. J. Sweet Jr., Degenerate principal series representations for U(n, n), Israel Journal of Mathematics 98 (1997), 253–306.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    E. Lapid and S. Rallis, On the local factors of representations of classical groups, in Automorphic Representations, L-Functions and Applications: Progress and Prospects, de Gruyter, Berlin, 2005, pp. 309–359.CrossRefGoogle Scholar
  25. [25]
    S. T. Lee, On some degenerate principal series representations of U(n, n), Journal of Functional Analysis 126 (1994), 305–366.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    S. T. Lee and C.-B. Zhu, Degenerate principal series and local theta correspondence, Transactions of the American Mathematical Society 350 (1998), 5017–5046.MathSciNetCrossRefGoogle Scholar
  27. [27]
    S. T. Lee and C.-B. Zhu, Degenerate principal series and local theta correspondence II, Israel Journal of Mathematics 100 (1997), 29–59.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    S. T. Lee and C.-B. Zhu, Degenerate principal series and local theta correspondence III, Journal of Algebra 319 (2008), 336–359.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    J.-S. Li, Singular unitary representations of classical groups, Inventiones Mathematicae 97 (1989), 237–255.Google Scholar
  30. [30]
    J.-S. Li, On the classification of irreducible low rank unitary representations of classical groups, Compositio Mathematica 71 (1989), 29–48.MathSciNetzbMATHGoogle Scholar
  31. [31]
    J.-S. Li, A. Paul, E.-C. Tan and C.-B. Zhu, The explicit duality correspondence of (Sp(p, q), O*(2n)), Journal of Functional Analysis 200 (2003), 71–100.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    H. Y. Loke (with an appendix by S. T. Lee), Howe quotients of unitary characters and unitary lowest weight modules, Representation Theory 10 (2006), 21–47.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    C. Moeglin, M.-F. Vignera and J.-L. Waldspurger, Correspondence de Howe sur un corps p-adique, Springer Lecture Notes in Mathematics 1291, Springer-Verlag, Berlin, 1987.Google Scholar
  34. [34]
    G. I. Ol’šanskiĭ, Intertwining operators and complementary series in the class of representations of the general group of matrices over a locally compact division algebra, induced from parabolic subgroups, Math. USSR Sb. 22 (1974), no 2., 218–255.Google Scholar
  35. [35]
    B. Ørsted and G. Zhang, Generalized principal series representations and tube domains, Duke Mathematical Journal 78 (1995), 335–357.MathSciNetCrossRefGoogle Scholar
  36. [36]
    I. Piatetski-Shapiro and S. Rallis, Rankin triple L-functions, Compositio Mathematica 64 (1987), 31–115.MathSciNetzbMATHGoogle Scholar
  37. [37]
    S. Rallis and G. Schiffmann, Distributions invariantes par le groupe orthogonal, Springer Lectures Notes in Mathematics 497, Springer-Verlag, Berlin, 1975, pp. 494–642.Google Scholar
  38. [38]
    S. Sahi, Unitary representations on the Shilov boundary of a symmetric tube domain, Contemporary Mathematics 145, American Mathematical Society, Providence, RI, 1993, pp. 275–286.Google Scholar
  39. [39]
    S. Sahi, Jordan algebras and degenerate principal series, Journal für die Reine und Angewandte Mathematik 462 (1995), 1–18.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    W. Scharlau, Quadratic and Hermitian Forms, Springer-Verlag, Berlin, 1985.zbMATHGoogle Scholar
  41. [41]
    F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Mathematical Journal 66 (1992), 1–41.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    G. Shimura, Euler Products and Eisenstein Series, CBMS Regional Conference Series in Mathematics 93, American Mathematical Society, Providence, RI, 1997.zbMATHGoogle Scholar
  43. [43]
    G. Shimura, Some exact formulas on quaternion unitary groups, Journal für die Reine und Angewandte Mathematik 509 (1999), 67–102.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    G. Shimura, Arithmetic and Analytic Theories of Quadratic Forms and Clifford Groups, Mathematical Surveys and Monographs 109, American Mathematical Society, Providence, RI, 2004.zbMATHGoogle Scholar
  45. [45]
    W. J. Sweet, Jr., A computation of the gamma matrix of a family of p-adic zeta integrals, Journal of Number Theory 55 (1995), 222–260.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    M. Tadić, On reducibility of parabolic induction, Israel Journal of Mathematics 107 (1998), 29–91.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    J.-L. Waldspurger, Démonstration d’une conjecture de dualité de Howe dans le cas padique, p ≠ 2, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I, Israel Mathematical Conference Proceedings 2, Weizmann, Jerusalem, 1990, pp. 267–324.Google Scholar
  48. [48]
    T. Yasuda, The residual spectrum of inner forms of Sp(2), Pacific Journal of Mathematics 232 (2007), 471–490.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    G. Zhang, Jordan algebras and generalized principal series representations, Mathematische Annalen 302 (1995), 773–786.MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    C.-B. Zhu, Invariant distributions of classical groups, Duke Mathematical Journal 65 (1992), 85–119.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2011

Authors and Affiliations

  1. 1.Department of Mathematics, Graduate School of ScienceOsaka City UniversityOsakaJapan

Personalised recommendations