Finite-dimensional pointed Hopf algebras over \(\mathbb{S}_4\)

  • Gastón Andrés García
  • Agustín García Iglesias


Let K be an algebraically closed field of characteristic 0. We conclude the classification of finite-dimensional pointed Hopf algebras whose group of group-likes is \(\mathbb{S}_4\). We also describe all pointed Hopf algebras over \(\mathbb{S}_5\) whose infinitesimal braiding is associated to the rack of transpositions.


  1. [AF]
    N. Andruskiewitsch and F. Fantino, On pointed Hopf algebras associated to unmixed conjugacy classes in S n, Journal of Mathematical Physics 48 (2007), 1–26.MathSciNetCrossRefGoogle Scholar
  2. [AFGV]
    N. Andruskiewitsch, F. Fantino, M. Graña and L. Vendramín, Finite-dimensional pointed Hopf algebras with alternating groups are trivial, Annali di Matematica Pura ed Applicata (4), to appear.Google Scholar
  3. [AFZ]
    N. Andruskiewitsch, F. Fantino and F. Zhang, On pointed Hopf algebras associated with the symmetric groups, Manuscripta Mathematica 128 (2009), 359–371.MathSciNetMATHCrossRefGoogle Scholar
  4. [AG1]
    N. Andruskiewitsch and M. Graña, From racks to pointed Hopf algebras, Advances in Mathematics 178 (2003), 177–243.MathSciNetMATHCrossRefGoogle Scholar
  5. [AG2]
    N. Andruskiewitsch and M. Graña, Examples of liftings of Nichols algebras over racks, Algebra Montpellier Announcments 2003, Paper 1, 6 pp. (electronic).Google Scholar
  6. [AHS]
    N. Andruskiewitsch, I. Heckenberger and H. J. Schneider, The Nichols algebra of a semisimple Yetter-Drinfeld module, American Journal of Mathematics, to appear.Google Scholar
  7. [AS1]
    N. Andruskiewitsch and H. J. Schneider, Finite quantum groups and Cartan matrices, Advances in Mathematics 154 (2000), 1–45.MathSciNetMATHCrossRefGoogle Scholar
  8. [AS2]
    N. Andruskiewitsch and H. J. Schneider, Pointed Hopf algebras, in New Directions in Hopf Algebras, MSRI series, Cambridge University Press, Cambridge, 2002, pp. 1–68.Google Scholar
  9. [AS3]
    N. Andruskiewitsch and H. J. Schneider, On the classification of finite-dimensional pointed Hopf algebras, Annals of Mathematics 171 (2001), 375–417.MathSciNetCrossRefGoogle Scholar
  10. [AZ]
    N. Andruskiewitsch and F. Zhang, On pointed Hopf algebras associated to some conjugacy classes in S n, Proceedings of the American Mathematical Society 135 (2007), 2723–2731.MathSciNetMATHCrossRefGoogle Scholar
  11. [BG]
    A. Braverman and D. Gaitsgory, Poincaré-Birkhoff-Witt Theorem for quadratic algebras of Koszul type, Journal of Algebra 181 (1996), 315–328.MathSciNetMATHCrossRefGoogle Scholar
  12. [FK]
    S. Fomin and A. N. Kirilov, Quadratic algebras, Dunkl elements and Schubert calculus, Progress in Mathematics 172 (1999), 146–182.Google Scholar
  13. [G1]
    M. Graña, On Nichols algebras of low dimension, in New Trends in Hopf Algebra Theory, Contemporary Mathematics 267 (2000), 111–136.Google Scholar
  14. [G2]
  15. [G3]
    M. Graña, Zoo of finite dimensional Nichols algebras of non-abelian group type, available at
  16. [G4]
    M. Graña, A freeness theorem for Nichols algebras, Journal of Algebra 231 (2000), 235–257.MathSciNetMATHCrossRefGoogle Scholar
  17. [M]
    S. Montgomery, Hopf algebras and their action on rings, CBMS Regional Conference Series 82, American Mathematical Society, Providence, RI, 1993.Google Scholar
  18. [MS]
    A. Milinski and H. J. Schneider, Pointed indecomposable Hopf algebras over Coxeter groups, Contemporary Mathematics 267 (2000), 215–236.MathSciNetGoogle Scholar
  19. [S]
    M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.Google Scholar

Copyright information

© Hebrew University Magnes Press 2011

Authors and Affiliations

  • Gastón Andrés García
    • 1
  • Agustín García Iglesias
    • 1
  1. 1.FaMAF-CIEM (CONICET)Universidad Nacional de Córdoba Medina Allende s/n, Ciudad UniversitariaCórdobaRepública Argentina

Personalised recommendations