Finite-dimensional pointed Hopf algebras over \(\mathbb{S}_4\)

  • Gastón Andrés García
  • Agustín García Iglesias


Let K be an algebraically closed field of characteristic 0. We conclude the classification of finite-dimensional pointed Hopf algebras whose group of group-likes is \(\mathbb{S}_4\). We also describe all pointed Hopf algebras over \(\mathbb{S}_5\) whose infinitesimal braiding is associated to the rack of transpositions.


Conjugacy Class Hopf Algebra Quadratic Relation Quadratic Algebra Hilbert Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [AF]
    N. Andruskiewitsch and F. Fantino, On pointed Hopf algebras associated to unmixed conjugacy classes in S n, Journal of Mathematical Physics 48 (2007), 1–26.MathSciNetCrossRefGoogle Scholar
  2. [AFGV]
    N. Andruskiewitsch, F. Fantino, M. Graña and L. Vendramín, Finite-dimensional pointed Hopf algebras with alternating groups are trivial, Annali di Matematica Pura ed Applicata (4), to appear.Google Scholar
  3. [AFZ]
    N. Andruskiewitsch, F. Fantino and F. Zhang, On pointed Hopf algebras associated with the symmetric groups, Manuscripta Mathematica 128 (2009), 359–371.MathSciNetMATHCrossRefGoogle Scholar
  4. [AG1]
    N. Andruskiewitsch and M. Graña, From racks to pointed Hopf algebras, Advances in Mathematics 178 (2003), 177–243.MathSciNetMATHCrossRefGoogle Scholar
  5. [AG2]
    N. Andruskiewitsch and M. Graña, Examples of liftings of Nichols algebras over racks, Algebra Montpellier Announcments 2003, Paper 1, 6 pp. (electronic).Google Scholar
  6. [AHS]
    N. Andruskiewitsch, I. Heckenberger and H. J. Schneider, The Nichols algebra of a semisimple Yetter-Drinfeld module, American Journal of Mathematics, to appear.Google Scholar
  7. [AS1]
    N. Andruskiewitsch and H. J. Schneider, Finite quantum groups and Cartan matrices, Advances in Mathematics 154 (2000), 1–45.MathSciNetMATHCrossRefGoogle Scholar
  8. [AS2]
    N. Andruskiewitsch and H. J. Schneider, Pointed Hopf algebras, in New Directions in Hopf Algebras, MSRI series, Cambridge University Press, Cambridge, 2002, pp. 1–68.Google Scholar
  9. [AS3]
    N. Andruskiewitsch and H. J. Schneider, On the classification of finite-dimensional pointed Hopf algebras, Annals of Mathematics 171 (2001), 375–417.MathSciNetCrossRefGoogle Scholar
  10. [AZ]
    N. Andruskiewitsch and F. Zhang, On pointed Hopf algebras associated to some conjugacy classes in S n, Proceedings of the American Mathematical Society 135 (2007), 2723–2731.MathSciNetMATHCrossRefGoogle Scholar
  11. [BG]
    A. Braverman and D. Gaitsgory, Poincaré-Birkhoff-Witt Theorem for quadratic algebras of Koszul type, Journal of Algebra 181 (1996), 315–328.MathSciNetMATHCrossRefGoogle Scholar
  12. [FK]
    S. Fomin and A. N. Kirilov, Quadratic algebras, Dunkl elements and Schubert calculus, Progress in Mathematics 172 (1999), 146–182.Google Scholar
  13. [G1]
    M. Graña, On Nichols algebras of low dimension, in New Trends in Hopf Algebra Theory, Contemporary Mathematics 267 (2000), 111–136.Google Scholar
  14. [G2]
  15. [G3]
    M. Graña, Zoo of finite dimensional Nichols algebras of non-abelian group type, available at
  16. [G4]
    M. Graña, A freeness theorem for Nichols algebras, Journal of Algebra 231 (2000), 235–257.MathSciNetMATHCrossRefGoogle Scholar
  17. [M]
    S. Montgomery, Hopf algebras and their action on rings, CBMS Regional Conference Series 82, American Mathematical Society, Providence, RI, 1993.Google Scholar
  18. [MS]
    A. Milinski and H. J. Schneider, Pointed indecomposable Hopf algebras over Coxeter groups, Contemporary Mathematics 267 (2000), 215–236.MathSciNetGoogle Scholar
  19. [S]
    M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.Google Scholar

Copyright information

© Hebrew University Magnes Press 2011

Authors and Affiliations

  • Gastón Andrés García
    • 1
  • Agustín García Iglesias
    • 1
  1. 1.FaMAF-CIEM (CONICET)Universidad Nacional de Córdoba Medina Allende s/n, Ciudad UniversitariaCórdobaRepública Argentina

Personalised recommendations