Israel Journal of Mathematics

, Volume 182, Issue 1, pp 505–508 | Cite as

A proof of snevily’s conjecture

Article

Abstract

We prove Snevily’s conjecture, which states that for any positive integer k and any two k-element subsets {a1, …, ak} and {b1, …, bk} of a finite abelian group of odd order there exists a permutation πSk such that all sums ai + bπ(i) (i ∈ [1, k]) are pairwise distinct.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Alon, Additive Latin transversals, Israel Journal of Mathematics 117 (2000), 125–130.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    S. Dasgupta, Gy. Károlyi, O. Serra and B. Szegedy, Transversals of additive Latin squares, Israel Journal of Mathematics 126 (2001), 17–28.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    H. Snevily, Unsolved Problems: The Cayley Addition Table of ℤ/nℤ, American Mathematical Monthly 106 (1999), 584–585.CrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2011

Authors and Affiliations

  1. 1.Nova International SchoolsSkopjeMacedonia

Personalised recommendations