Israel Journal of Mathematics

, Volume 182, Issue 1, pp 505–508

A proof of snevily’s conjecture

Article

DOI: 10.1007/s11856-011-0040-6

Cite this article as:
Arsovski, B. Isr. J. Math. (2011) 182: 505. doi:10.1007/s11856-011-0040-6
  • 359 Downloads

Abstract

We prove Snevily’s conjecture, which states that for any positive integer k and any two k-element subsets {a1, …, ak} and {b1, …, bk} of a finite abelian group of odd order there exists a permutation πSk such that all sums ai + bπ(i) (i ∈ [1, k]) are pairwise distinct.

Copyright information

© Hebrew University Magnes Press 2011

Authors and Affiliations

  1. 1.Nova International SchoolsSkopjeMacedonia

Personalised recommendations