Israel Journal of Mathematics

, Volume 176, Issue 1, pp 61–107 | Cite as

Patching over fields

Article

Abstract

We develop a new form of patching that is both far-reaching and more elementary than the previous versions that have been used in inverse Galois theory for function fields of curves. A key point of our approach is to work with fields and vector spaces, rather than rings and modules. After presenting a self-contained development of this form of patching, we obtain applications to other structures such as Brauer groups and differential modules.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Bourbaki, Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass., 1972.MATHGoogle Scholar
  2. [2]
    H. Cartan, Sur les matrices holomorphes de n variables complexes, Journal de Mathématiques Pures et Appliquées 19 (1940), 1–26.MATHMathSciNetGoogle Scholar
  3. [3]
    M. D. Fried and M. Jarden, Field Arithmetic, second edition, Springer, Berlin, 2005.MATHGoogle Scholar
  4. [4]
    P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978.MATHGoogle Scholar
  5. [5]
    A. Grothendieck, Élements de Géométrie Algébrique (EGA) III, 1e partie, Publications Mathématiques Institut de Hautes Études Scientifiques 11 (1961).Google Scholar
  6. [6]
    D. Haran and M. Jarden, Regular split embedding problems over complete valued fields, Forum Mathematicum 10 (1998), 329–351.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    D. Haran and M. Jarden, Regular split embedding problems over function fields of one variable over ample fields, Journal of Algebra 208 (1998), 147–164.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    D. Haran and H. Völklein, Galois groups over complete valued fields, Israel Journal of Mathematics 93 (1996), 9–27.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    D. Harbater, Convergent arithmetic power series, American Journal of Mathematics 106 (1984), 801–846.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    D. Harbater, Galois coverings of the arithmetic line, in Number Theory (New York, 1984–1985) (D. V. Chudnovsky, and G. V. Chudnovsky, eds.), Volume 1240 of Lecture Notes in Mathematics, Springer, Berlin, 1987, pp. 165–195.Google Scholar
  11. [11]
    D. Harbater, Formal patching and adding branch points, American Journal of Mathematics 115 (1993), 487–508.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    D. Harbater, Fundamental groups and embedding problems in characteristic p, in Recent Developments in the Inverse Galois Problem (M. Fried, ed.) Volume 186 of Contemporary Mathematics Series, American Math. Society, Providence, RI, 1995, pp. 353–369.Google Scholar
  13. [13]
    D. Harbater, Patching and Galois theory, in Galois Groups and Fundamental Groups (L. Schneps, ed.), MSRI Publications Series, Vol. 41, Cambridge University Press, Cambridge, 2003, pp. 313–424.Google Scholar
  14. [14]
    D. Harbater, Patching over fields (joint work with Julia Hartmann), in Arithmetic and Differential Galois Groups, Volume 4, no. 2 of Oberwolfach reports, European Mathematical Society, Zürich, 2007.Google Scholar
  15. [15]
    D. Harbater and J. Hartmann, Patching and differential Galois groups, 2007, preprint.Google Scholar
  16. [16]
    D. Harbater, J. Hartmann and D. Krashen, Patching subfields of division algebras, 2007, submitted, available at arXiv:0904.1594.Google Scholar
  17. [17]
    D. Harbater and K. F. Stevenson, Patching and thickening problems, Journal of Algebra 212 (1999), 272–304.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    J. Hartmann, Patching and differential Galois groups (joint work with David Harbater), in Arithmetic and Differential Galois Groups, Volume 4, no. 2 of Oberwolfach reports, European Mathematical Society, Zürich, 2007.Google Scholar
  19. [19]
    R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977.MATHGoogle Scholar
  20. [20]
    I. N. Herstein, Noncommutative Rings, in The Carus Mathematical Monographs, No. 15, Published by The Mathematical Association of America; distributed by John Wiley & Sons, Inc., New York 1968.MATHGoogle Scholar
  21. [21]
    M. Jarden, The inverse Galois problem over formal power series fields, Israel Journal of Mathematics 85 (1994), 263–275.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Q. Liu, Tout groupe fini est un groupe de Galois sur ℚ p (T), d’après Harbater, in Recent Developments in the Inverse Galois Problem (M. Fried, ed.) Volume 186 of Contemporary Mathematics Series, American Math. Society, Providence, RI, 1995, pp. 261–265.Google Scholar
  23. [23]
    B. H. Matzat and M. van der Put, Constructive differential Galois theory, in Galois Groups and Fundamental Groups (L. Schneps, ed.), Volume 41 of MSRI Publications Series, Cambridge University Press, Cambridge, 2003, pp. 425–467.Google Scholar
  24. [24]
    D. Mumford, The Red Book of Varieties and Schemes, Volume 1358 of Lecture Notes in Mathematics, Springer, Berlin, 1988 and 1999.MATHGoogle Scholar
  25. [25]
    R. Pierce, Associative Algebras, Springer, Berlin, 1982.MATHGoogle Scholar
  26. [26]
    F. Pop, Étale Galois covers of smooth affine curves, Inventiones Mathematicae 120 (1995), 555–578.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    R. Pries, Construction of covers with formal and rigid geometry, in Courbes Semi-stables et Groupe Fondamental en Géométrie Algébrique (J. B. Bost, F. Loeser and M. Raynaud, eds.),Volume 187 of Progress in Mathematics, Birkhäuser, Basel, 2000, pp. 157–167.Google Scholar
  28. [28]
    M. Raynaud, Revêtements de la droite affine en caractéristique p > 0 et conjecture d’Abhyankar, Inventiones Mathematicae 116 (1994), 425–462.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    J. P. Serre, Géométrie algébrique et géométrie analytique, Annales de l’Institut Fourier 6 (1956), 1–42.MathSciNetGoogle Scholar
  30. [30]
    J. P. Serre, Algebraic Groups and Class Fields, Springer, Berlin, 1988.MATHGoogle Scholar
  31. [31]
    H. Völklein, Groups as Galois Groups, Cambridge University Press, Cambridge, 1996.MATHCrossRefGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Lehrstuhl A für MathematikRWTH Aachen UniversityAachenGermany

Personalised recommendations