Israel Journal of Mathematics

, 173:309

Continuous and random Vapnik-Chervonenkis classes

  • Itaï Ben Yaacov
Article

Abstract

Nous démontrons que si T est une théorie dépendante, sa randomisée de keisler TR l’est aussi.

Pour faire cela nous généralisons la notion d’une classe de Vapnik-Chervonenkis à des familles de fonctions à valeurs dans [0, 1] (dyune classe de Vapnik-Chervonenkis continue), et nous caractérisons les familles de fonctions ayant cette propriété par la vitesse de croissance de la largeur moyenne d’une famille de compacts convexes associés.

References

  1. [AS06]
    Guillaume Aubrun and Stanisław J. Szarek, Tensor product of convex sets and the volume of separable states on n qudits, Physical Review A 73 (2006), 022109.CrossRefGoogle Scholar
  2. [Ben03]
    Itaï Ben Yaacov, Positive model theory and compact abstract theories, Journal of Mathematical Logic 3 (2003), 85–118.MATHCrossRefMathSciNetGoogle Scholar
  3. [BK]
    Itaï Ben Yaacov and H. Jerome Keisler, Randomizations of models as metric structures, submitted.Google Scholar
  4. [BU]
    Itaï Ben Yaacov and Alexander Usvyatsov, Continuous first order logic and local stability, Transactions of the American Mathematical Society, to appear.Google Scholar
  5. [Hen76]
    C. Ward Henson, Nonstandard hulls of Banach spaces, Israel Journal of Mathematics 25 (1976), 108–144.MATHCrossRefMathSciNetGoogle Scholar
  6. [HPP]
    Ehud Hrushovski, Kobi Peterzil, and Anand Pillay, Groups, measure and the NIP, Journal of the American Mathematical Society 21 (2008), 563–596.MATHCrossRefMathSciNetGoogle Scholar
  7. [Kei99]
    H. Jerome Keisler, Randomizing a model, Advances in Mathematics 143 (1999), 124–158.MATHCrossRefMathSciNetGoogle Scholar
  8. [KM81]
    Jean-Louis Krivine and Bernard Maurey, Espaces de Banach stables, Israel Journal of Mathematics 39 (1981), 273–295.MATHCrossRefMathSciNetGoogle Scholar
  9. [Las92]
    Michael C. Laskowski, Vapnik-Chervonenkis classes of definable sets, Journal of the London Mathematical Society. Second Series 45 (1992), 377–384.MATHMathSciNetGoogle Scholar
  10. [Poi85]
    Bruno Poizat, Cours de théorie des modèles, Nur al-Mantiq wal-Ma’rifah, 1985.Google Scholar
  11. [She71]
    Saharon Shelah, Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory, Annals of Mathematical Logic 3 (1971), 271–362.MATHCrossRefGoogle Scholar
  12. [VC71]
    V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probability and Applications 16 (1971), 264–280.MATHCrossRefGoogle Scholar
  13. [vdD98]
    Lou van den Dries, Tame Topology and o-Minimal Structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998.Google Scholar

Copyright information

© Hebrew University Magnes Press 2009

Authors and Affiliations

  • Itaï Ben Yaacov
    • 1
  1. 1.Université Lyon 1 INSA de Lyon, F-69621, École Centrale de Lyon CNRS UMR 5208, Institut Camille JordanUniversité de LyonVilleurbanne-CedexFrance

Personalised recommendations