Advertisement

Harmonic analysis from quasi-periodic domains

  • Mikaël PichotEmail author
Article
  • 70 Downloads

Abstract

Harmonic analysis is applied in a quasi-periodic context to get rigidity results in orbit equivalence theory.

Keywords

Simplicial Complex Borel Subset Geodesic Segment Isometric Action Standard Borel Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    C. Anantharaman-Delaroche and J. Renault, Amenable groupoids, in Groupoids in analysis, geometry, and physics (Boulder, CO, 1999), Contemporary Mathematics, 282, American Mathematical Society, Providence, RI, 2001, pp.35–46.Google Scholar
  2. [2]
    W. Ballmann and J. Światkowski, On L 2-cohomology and property T for automorphism groups of polyhedral cell complexes, Geometric and Functional Analysis 7 (1997), 615–645.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    S. Barré and M. Pichot, Sur les immeubles triangulaires et leurs automorphismes, Geometriae Dedicata 130 (2007), 71–79.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    S. Barré, M. Pichot, Existence d’immeubles triangulaires quasi-périodiques, preprint.Google Scholar
  5. [5]
    M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999.zbMATHGoogle Scholar
  6. [6]
    A. Borel, Cohomologie de certains groupes discretes et laplacien p-adique (d’après H. Garland), Séminaire Bourbaki, 26e année, Exp. No. 437, pp. 12–35, 1973/1974. Lecture Notes in Math., Vol. 431, Springer, Berlin, 1975.Google Scholar
  7. [7]
    D. I. Cartwright, W. Młotkowski and T. Steger, Property (T) and à 2 groups, Annales de l’Institut Fourier (Grenoble) 44 (1994), 213–248.zbMATHGoogle Scholar
  8. [8]
    A. Connes, Sur la théorie non commutative de l’intégration, Algèbres d’opérateurs, Lecture Notes in Mathematics 725 (1979), 19–143.Google Scholar
  9. [9]
    A. Connes, J. Feldman and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergod. Th. & Dynam. Sys. 1 (1981), 431–450.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    J. Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann), Gauthier-Villars Éditeurs, Paris, 1969. Deuxième édition, revue et augmentée, Cahiers Scientifiques, Fasc. XXV.Google Scholar
  11. [11]
    J. Eells and J. Sampson, Harmonic mappings of Riemannian manifolds, American Journal of Mathematics 86 (1964), 109–160.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    J. Eells, B. Fuglede, Harmonic Maps Between Riemannian Polyhedra, Cambridge Tracts in Mathematics, 142. Cambridge University Press, Cambridge, 2001.zbMATHGoogle Scholar
  13. [13]
    J. Feldman and C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras, Transactions of the American Mathematical Society 234 (1977), 289–324.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    A. Furman, Gromov’s measure equivalence and rigidity of higher rank lattices, Annals of Mathematics. Second Series 150 (1999), 1059–1081.zbMATHMathSciNetGoogle Scholar
  15. [15]
    D. Gaboriau, Invariants l 2 de relations d’équivalence et de groupes, Publications Mathématiques. Institut de Hautes Études Scientifiques 95 (2002), 93–150.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    H. Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic groups, Annals of Mathematics. Second Series. 97 (1973), 375–423.MathSciNetGoogle Scholar
  17. [17]
    É. Ghys, Groupes aléatoires [d’après Misha Gromov,…], Séminaire Bourbaki, Exp. No. 916, 2003.Google Scholar
  18. [18]
    M. Gromov, CAT(κ)-spaces: construction and concentration, Rossiiskaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematicheski.. Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI) 280 (2001), Geom. i Topol. 7, 100–140, 299–300, 2001. (translation in J. Math. Sci. (N. Y.) 119, (2004), 178–200.)Google Scholar
  19. [19]
    M. Gromov, Random walk in random groups, Geometric and Functional Analysis 13, (2003), 73–146.zbMATHMathSciNetGoogle Scholar
  20. [20]
    M. Gromov, P. Pansu, Rigidity of lattices: an introduction, in Geometric topology: recent developments (Montecatini Terme, 1990), Lecture Notes in Mathematice, Vol. 1504, Springer, Berlin, 1991, pp. 39–137.CrossRefGoogle Scholar
  21. [21]
    H. Izeki and S. Nayatani, Combinatorial harmonic maps and discrete-group actions on Hadamard spaces, Geometriae Dedicata 114 (2005), 117–188.CrossRefMathSciNetGoogle Scholar
  22. [22]
    J. Jost, Generalized harmonic maps between metric spaces, in Geometric analysis and the calculus of variations, Internat. Press, Cambridge, MA, 1996, pp. 143–174.Google Scholar
  23. [23]
    N. Korevaar, R. Schoen, Sobolev spaces and harmonic maps for metric space targets, Communications in Analysis and Geometry 1 (1993), 561–659.zbMATHMathSciNetGoogle Scholar
  24. [24]
    N. Monod and Y. Shalom, Orbit equivalence rigidity and bounded cohomology, Annals of Mathematics, to appear.Google Scholar
  25. [25]
    P. Pansu, Formule de Matsushima, de Garland, et propriété T pour des groupes agissant sur des espaces symétriques ou des immeubles, Bulletin de la Société Mathématique de France 126 (1998), 107–139.zbMATHMathSciNetGoogle Scholar
  26. [26]
    M. Pichot, Quasi-périodicité et théorie de la mesure, Ph. D. thesis.Google Scholar
  27. [27]
    M. Pichot, Sur les espaces mesurés singuliers fortement ergodiques et leurs structures métriques-mesuées, Annales de l’Institut Fourier (Grenoble) 57 (2007), 1–43.zbMATHMathSciNetGoogle Scholar
  28. [28]
    M. Pichot, Sur la théorie spectrale des relations d’équivalence mesurées, Journal of the Institute of Mathematics of Jussieu 6 (2007), 453–500.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    S. Popa, Strong rigidity of II 1 factors arising from malleable actions of w-rigid groups. I, II, Inventiones Mathematicae 165 (2006), 369–451.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    L. Silberman, Addendum to: Random walk in random group by M. Gromov, Geometric and Functional Analysis 13 (2003), 147–177.zbMATHMathSciNetCrossRefGoogle Scholar
  31. [31]
    M. T. Wang, A fixed point theorem of discrete group actions on Riemannian manifolds, Journal of Differential Geometry 50 (1998), 249–267.zbMATHMathSciNetGoogle Scholar
  32. [32]
    M. T. Wang, Generalized harmonic maps and representations of discrete groups, Communications in Analysis and Geometry 8 (1999), 545–563.Google Scholar
  33. [33]
    R. Zimmer, Ergodic Theory and Semi-Simple Groups, Birkhäuser Verlag, Basel, 1984.Google Scholar
  34. [34]
    A. Żuk, La propriété T de Kazhdan pour les groupes agissant sur les polyèdres, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, 323 (1996), 453–458.zbMATHGoogle Scholar
  35. [35]
    A. Żuk, Property (T) and Kazhdan constants for discrete groups, Geometric and Functional Analysis 13 (2003), 643–670.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2008

Authors and Affiliations

  1. 1.IHESBures-sur-YvetteFrance

Personalised recommendations