Israel Journal of Mathematics

, Volume 159, Issue 1, pp 221–242 | Cite as

Neighborly cubical polytopes and spheres

  • Michael Joswig
  • Thilo Rörig


We prove that the neighborly cubical polytopes studied by Günter M. Ziegler and the first named author [14] arise as a special case of the neighborly cubical spheres constructed by Babson, Billera and Chan [4]. By relating the two constructions we obtain an explicit description of a non-polytopal neighborly cubical sphere and, further, a new proof of the fact that the cubical equivelar surfaces of McMullen, Schulz and Wills [16] can be embedded into ℝ3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Altshuler, A peculiar triangulation of the 3-sphere, Proceedings of the American Mathematical Society 54 (1976), 449–452.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Altshuler, Neighborly 4-polytopes and neighborly combinatorial 3-manifolds with ten vertices, Canadian Journal of Mathematics 29 (1977), 400–420.MathSciNetGoogle Scholar
  3. [3]
    A. Altshuler and L. Steinberg, Neighborly 4-polytopes with 9 vertices, Journal of Combinatorial Theory, Series A 15 (1973), 270–287.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    E. K. Babson, L. J. Billera and C. S. Chan, Neighborly cubical spheres and a cubical lower bound conjecture, Israel Journal of Mathematics 102 (1997), 297–315.MATHMathSciNetGoogle Scholar
  5. [5]
    S. Basu, R. Pollack and M.-F. Roy, Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, Vol. 10, Springer-Verlag, Berlin, 2003.MATHGoogle Scholar
  6. [6]
    A. Björner, Posets, regular CW complexes and Bruhat order, European Journal of Combinatorics 5 (1984), 7–16.MATHMathSciNetGoogle Scholar
  7. [7]
    J. Bokowski and K. Garms, Altshuler’s sphere M 42510 is not polytopal, European Journal of Combinatorics 8 (1987), 227–229.MATHMathSciNetGoogle Scholar
  8. [8]
    J. Bokowski and B. Sturmfels, Computational Synthetic Geometry, Lecture Notes in Mathematics, vol. 1355, Springer-Verlag, Berlin, 1989.MATHGoogle Scholar
  9. [9]
    H. S. M. Coxeter, Regular skew polyhedra in three and four dimensions, and their topological analogues, Proceedings of the London Mathematical Society, II. Ser. 43 (1937), 33–62.MATHCrossRefGoogle Scholar
  10. [10]
    D. Gale, Neighborly and cyclic polytopes, in Proceedings of Symposia in Pure Mathematics, Vol. VII, American Mathematical Society, Providence, R.I., 1963, pp. 225–232.Google Scholar
  11. [11]
    E. Gawrilow and M. Joswig, polymake: a framework for analyzing convex polytopes, in Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 43–73. Scholar
  12. [12]
    B. Grünbaum, Convex Polytopes, second ed., Graduate Texts in Mathematics, vol. 221, Springer-Verlag, New York, 2003, Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler.Google Scholar
  13. [13]
    B. Grünbaum and V. P. Sreedharan, An enumeration of simplicial 4-polytopes with 8 vertices, Journal of Combinatorial Theory 2 (1967), 437–465.MATHGoogle Scholar
  14. [14]
    M. Joswig and G. M. Ziegler, Neighborly cubical polytopes, Discrete and Computational Geometry 24 (2000), 325–344, The Branko Grünbaum birthday issue.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    F. H. Lutz, The Manifold Page, 1999–2005,
  16. [16]
    P. McMullen, C. Schulz and J. M. Wills, Equivelar polyhedral manifolds in E 3, Israel Journal of Mathematics 41 (1982), 331–346.MATHMathSciNetGoogle Scholar
  17. [17]
    P. McMullen, C. Schulz and J. M. Wills, Polyhedral 2-manifolds in E 3 with unusually large genus, Israel Journal of Mathematics 46 (1983), 127–144.MATHMathSciNetGoogle Scholar
  18. [18]
    K. Polthier, K. Hildebrandt, E. Preuss and U. Reitebuch, JavaView v3.03,, 2004.Google Scholar
  19. [19]
    J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in Mathematics, vol. 1643, Springer-Verlag, Berlin, 1996.Google Scholar
  20. [20]
    G. Ringel, Über drei kombinatorische Probleme am n-dimensionalen Würfel und Würfelgitter, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 20 (1955), 10–19.MATHMathSciNetGoogle Scholar
  21. [21]
    R. Sanyal, T. Rörig and G. M. Ziegler, Polytopes and Polyhedral Surfaces via Projection, in preparation.Google Scholar
  22. [22]
    T. Rörig, Neighborly cubical spheres and polytopes, Master’s thesis, Technische Universität Berlin, 2004,
  23. [23]
    I. Shemer, Neighborly polytopes, Israel Journal of Mathematics 43 (1982), 291–314.MATHMathSciNetGoogle Scholar
  24. [24]
    G. M. Ziegler, personal communication, March 2004.Google Scholar
  25. [25]
    G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.MATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2007

Authors and Affiliations

  • Michael Joswig
    • 1
  • Thilo Rörig
    • 2
  1. 1.Fachbereich Mathematik, AG 7TU DarmstadtDarmstadtGermany
  2. 2.Institut für Mathematik, MA 6-2TU BerlinBerlinGermany

Personalised recommendations