Advertisement

Israel Journal of Mathematics

, Volume 159, Issue 1, pp 221–242 | Cite as

Neighborly cubical polytopes and spheres

  • Michael Joswig
  • Thilo Rörig
Article

Abstract

We prove that the neighborly cubical polytopes studied by Günter M. Ziegler and the first named author [14] arise as a special case of the neighborly cubical spheres constructed by Babson, Billera and Chan [4]. By relating the two constructions we obtain an explicit description of a non-polytopal neighborly cubical sphere and, further, a new proof of the fact that the cubical equivelar surfaces of McMullen, Schulz and Wills [16] can be embedded into ℝ3.

Keywords

Simplicial Complex Vector Representation Face Lattice Boundary Sphere Cubical Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Altshuler, A peculiar triangulation of the 3-sphere, Proceedings of the American Mathematical Society 54 (1976), 449–452.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    A. Altshuler, Neighborly 4-polytopes and neighborly combinatorial 3-manifolds with ten vertices, Canadian Journal of Mathematics 29 (1977), 400–420.MathSciNetGoogle Scholar
  3. [3]
    A. Altshuler and L. Steinberg, Neighborly 4-polytopes with 9 vertices, Journal of Combinatorial Theory, Series A 15 (1973), 270–287.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    E. K. Babson, L. J. Billera and C. S. Chan, Neighborly cubical spheres and a cubical lower bound conjecture, Israel Journal of Mathematics 102 (1997), 297–315.zbMATHMathSciNetGoogle Scholar
  5. [5]
    S. Basu, R. Pollack and M.-F. Roy, Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, Vol. 10, Springer-Verlag, Berlin, 2003.zbMATHGoogle Scholar
  6. [6]
    A. Björner, Posets, regular CW complexes and Bruhat order, European Journal of Combinatorics 5 (1984), 7–16.zbMATHMathSciNetGoogle Scholar
  7. [7]
    J. Bokowski and K. Garms, Altshuler’s sphere M 42510 is not polytopal, European Journal of Combinatorics 8 (1987), 227–229.zbMATHMathSciNetGoogle Scholar
  8. [8]
    J. Bokowski and B. Sturmfels, Computational Synthetic Geometry, Lecture Notes in Mathematics, vol. 1355, Springer-Verlag, Berlin, 1989.zbMATHGoogle Scholar
  9. [9]
    H. S. M. Coxeter, Regular skew polyhedra in three and four dimensions, and their topological analogues, Proceedings of the London Mathematical Society, II. Ser. 43 (1937), 33–62.zbMATHCrossRefGoogle Scholar
  10. [10]
    D. Gale, Neighborly and cyclic polytopes, in Proceedings of Symposia in Pure Mathematics, Vol. VII, American Mathematical Society, Providence, R.I., 1963, pp. 225–232.Google Scholar
  11. [11]
    E. Gawrilow and M. Joswig, polymake: a framework for analyzing convex polytopes, in Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 43–73. http://www.math.tu-berlin.de/polymake.Google Scholar
  12. [12]
    B. Grünbaum, Convex Polytopes, second ed., Graduate Texts in Mathematics, vol. 221, Springer-Verlag, New York, 2003, Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler.Google Scholar
  13. [13]
    B. Grünbaum and V. P. Sreedharan, An enumeration of simplicial 4-polytopes with 8 vertices, Journal of Combinatorial Theory 2 (1967), 437–465.zbMATHGoogle Scholar
  14. [14]
    M. Joswig and G. M. Ziegler, Neighborly cubical polytopes, Discrete and Computational Geometry 24 (2000), 325–344, The Branko Grünbaum birthday issue.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    F. H. Lutz, The Manifold Page, 1999–2005, http://www.math.tu-berlin.de/diskregeom/stellar/.
  16. [16]
    P. McMullen, C. Schulz and J. M. Wills, Equivelar polyhedral manifolds in E 3, Israel Journal of Mathematics 41 (1982), 331–346.zbMATHMathSciNetGoogle Scholar
  17. [17]
    P. McMullen, C. Schulz and J. M. Wills, Polyhedral 2-manifolds in E 3 with unusually large genus, Israel Journal of Mathematics 46 (1983), 127–144.zbMATHMathSciNetGoogle Scholar
  18. [18]
    K. Polthier, K. Hildebrandt, E. Preuss and U. Reitebuch, JavaView v3.03, www.javaview.de, 2004.Google Scholar
  19. [19]
    J. Richter-Gebert, Realization Spaces of Polytopes, Lecture Notes in Mathematics, vol. 1643, Springer-Verlag, Berlin, 1996.Google Scholar
  20. [20]
    G. Ringel, Über drei kombinatorische Probleme am n-dimensionalen Würfel und Würfelgitter, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 20 (1955), 10–19.zbMATHMathSciNetGoogle Scholar
  21. [21]
    R. Sanyal, T. Rörig and G. M. Ziegler, Polytopes and Polyhedral Surfaces via Projection, in preparation.Google Scholar
  22. [22]
    T. Rörig, Neighborly cubical spheres and polytopes, Master’s thesis, Technische Universität Berlin, 2004, http://www.math.tu-berlin.de/~thilosch/.
  23. [23]
    I. Shemer, Neighborly polytopes, Israel Journal of Mathematics 43 (1982), 291–314.zbMATHMathSciNetGoogle Scholar
  24. [24]
    G. M. Ziegler, personal communication, March 2004.Google Scholar
  25. [25]
    G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995.zbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2007

Authors and Affiliations

  • Michael Joswig
    • 1
  • Thilo Rörig
    • 2
  1. 1.Fachbereich Mathematik, AG 7TU DarmstadtDarmstadtGermany
  2. 2.Institut für Mathematik, MA 6-2TU BerlinBerlinGermany

Personalised recommendations