Cost, 2-Betti numbers and the sofic entropy of some algebraic actions

  • Damien Gaboriau
  • Brandon SewardEmail author


In 1987, Ornstein and Weiss discovered that the Bernoulli 2-shift over the rank two free group factors onto the seemingly larger Bernoulli 4-shift. With the recent creation of an entropy theory for actions of sofic groups (in particular free groups), their example shows the surprising fact that entropy can increase under factor maps. In order to better understand this phenomenon, we study a natural generalization of the Ornstein-Weiss map for countable groups. We relate the increase in entropy to the cost and to the first 2-Betti number of the group. More generally, we study coboundary maps arising from simplicial actions and, under certain assumptions, relate 2-Betti numbers to the failure of the Yuzvinsky addition formula. This work is built upon a study of entropy theory for algebraic actions. We prove that for actions on profinite groups via continuous group automorphisms, topological sofic entropy is equal to measure sofic entropy with respect to Haar measure whenever the homoclinic subgroup is dense. For algebraic actions of residually finite groups we find sufficient conditions for the sofic entropy to be equal to the supremum exponential growth rate of periodic points.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Abért and B. Weiss, Bernoulli actions are weakly contained in any free action, Ergodic Theory Dynam. Systems 33 (2013), 323–333.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    R. L. Adler, A. G. Konheim and M. H. McAndrew. Topological entropy, Trans. Am. Math. Soc. 114 (1965), 309–319.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    A. Alpeev and B. Seward, Krieger’s finite generator theorem for ergodic actions of countable groups III, preprint,
  4. [4]
    K. Ball, Factors of independent and identically distributed processes with non-amenable group actions, Ergodic Theory Dynam. Systems 25 (2005), 711–730.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    L. Bartholdi, Amenability of groups is characterized by Myhill’s theorem, J. Eur. Math. Soc. 21 (2019), 3191–3197.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    L. Bartholdi, Linear cellular automata and duality, preprint,
  7. [7]
    N. Bergeron and D. Gaboriau, Asymptotique des nombres de Betti, invariants l 2et laminations, Comment. Math. Helv. 79 (2004), 362–395.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    M. Björklund and R. Miles, Entropy range problems and actions of locally normal groups, Discrete Contin. Dyn. Syst. 25 (2009), 981–989.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    L. Bowen, A new measure conjugacy invariant for actions of free groups, Ann. of Math. 171 (2010), 1387–1400.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), 217–245.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    L. Bowen, Weak isomorphisms between Bernoulli shifts, Israel J. Math. 83 (2011), 93–102.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    L. Bowen, Entropy for expansive algebraic actions of residually finite groups, Ergodic Theory Dynam. Systems 31 (2011), 703–718.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    L. Bowen, Sofic entropy and amenable groups, Ergodic Theory Dynam. Systems, 32 (2012), 427–466.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    L. Bowen, Entropy theory for sofic groupoids I: the foundations, J. Anal. Math. 124 (2014), 149–233.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    L. Bowen and Y. Gutman, A Juzvinskii addition theorem for finitely generated free group actions, Ergodic Theory Dynam. Systems 34 (2014), 95–109.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    L. Bowen and H. Li, Harmonic models and spanning forests of residually finite groups, J. Funct. Anal. 263 (2012), 1769–1808.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    J. Cheeger and M. Gromov, L 2-cohomology and group cohomology, Topology 25 (1986), 189–215.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    N.-P. Chung and H. Li, Homoclinic group, IE group, and expansive algebraic actions, Invent. Math. 199 (2015), 805–858.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    C. Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc. 19 (2006), 737–758.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    W. Dicks and P. A. Linnell, L 2-Betti numbers of one-relator groups, Math. Ann. 337 (2007), 855–874.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    T. Downarowicz, Entropy in Dynamical Systems, Cambridge University Press, New York, 2011.zbMATHCrossRefGoogle Scholar
  22. [22]
    G. Elek, The Euler characteristic of discrete groups and Yuzvinskii’s entropy addition formula, Bull. Lond. Math. Soc. 31 (1999), 661–664.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    G. Elek, Amenable groups, topological entropy and Betti numbers, Israel J. Math. 132 (2002), 315–336.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    G. Elek and E. Szabó, Hyperlinearity, essentially free actions and L 2 -invariants. The sofic property, Math. Ann. 332 (2005), 421–441.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    M. Ershov and W. Lück, The first L 2-Betti number and approximation in arbitrary characteristic, Doc. Math. 19 (2014), 313–331.MathSciNetzbMATHGoogle Scholar
  26. [26]
    M. Farber, Geometry of growth: approximation theorems for L 2invariants, Math. Ann. 311 (1998), 335–375.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras, I., Trans. Amer. Math. Soc. 234 (1977), 289–324.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    D. Gaboriau, Coût des relations d’équivalence et des groupes, Invent. Math. 139 (2000), 41–98.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    D. Gaboriau. Invariants L 2de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Etudes Sci. 95 (2002), 93–150.zbMATHCrossRefGoogle Scholar
  30. [30]
    D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann’s problem, Invent. Math. 177 (2009), 533–540.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    E. Glasner, Ergodic Theory via Joinings. American Mathematical Society, Providence, RI, 2003.zbMATHCrossRefGoogle Scholar
  32. [32]
    B. Hayes, Fuglede-Kadison determinants and sofic entropy, Geom. Funct. Anal. 26 (2016), 520–606.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    S. A. Juzvinskiĭ, Metric properties of the endomorphisms of compact groups, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 1295–1328.MathSciNetGoogle Scholar
  34. [34]
    J. C. Keiffer, A generalized Shannon-McMillan Theorem for the action of an amenable group on a probability space, Ann. Probab. 3 (1975), 1031–1037.MathSciNetCrossRefGoogle Scholar
  35. [35]
    D. Kerr, Sofic measure entropy via finite partitions, Groups Geom. Dyn. 7 (2013), 617–632.MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), 501–558.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    D. Kerr and H. Li, Soficity, amenability, and dynamical entropy, Amer. J. Math. 135 (2013), 721–761.MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    A. N. Kolmogorov, New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces, Dokl. Akad. Nauk 119 (1958), 861–864.zbMATHGoogle Scholar
  39. [39]
    A. N. Kolmogorov, Entropy per unit time as a metric invariant for automorphisms, Dokl. Akad. Nauk 124 (1959), 754–755.MathSciNetzbMATHGoogle Scholar
  40. [40]
    G. Levitt. On the cost of generating an equivalence relation, Ergodic Theory Dynam. Systems 15 (1995), 1173–1181.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    H. Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, Ann. of Math. 176 (2012), 303–347.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    D. Lind, A survey of algebraic actions of the discrete Heisenberg group, Russian Math. Surveys 70 (2015), 657–714.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    D. Lind and K. Schmidt, preprint, 2009.Google Scholar
  44. [44]
    D. Lind, K. Schmidt, and T. Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), 593–629.MathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    W. Lück, Approximating L 2-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), 455–481.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    W. Lück, L 2-Invariants: Theory and Applications to Geometry and K-theory, Springer-Verlag, Berlin, 2002.zbMATHCrossRefGoogle Scholar
  47. [47]
    W. Lück and D. Osin, Approximating the first L 2-Betti number of residually finite groups, J. Topol. Anal. 3 (2011), 153–160.MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    N. Meesschaert, S. Raum and S. Vaes, Stable orbit equivalence of Bernoulli actions of free groups and isomorphism of some of their factor actions, Expo. Math. 31 (2013), 274–294.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    T. Meyerovitch, Positive sofic entropy implies finite stabilizer, Entropy 18 (2016), paper no. 263.MathSciNetCrossRefGoogle Scholar
  50. [50]
    R. Miles, The entropy of algebraic actions of countable torsion-free abelian groups, Fund. Math. 201 (2008), 261–282.MathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    D. Ornstein and B. Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 161–164.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987), 1–141.MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    V. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008), 449–480.MathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    J. Peterson and A. Thom, Group cocycles and the ring of affiliated operators, Invent. Math. 185 (2011), 561–592.MathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    S. Popa, Some computations of 1-cohomology groups and construction of non orbit equivalent actions, J. Inst. Math. Jussieu 5 (2006), 309–332.MathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    V. A. Rokhlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5, 3–56.MathSciNetGoogle Scholar
  57. [57]
    B. Seward, Ergodic actions of countable groups and finite generating partitions, Groups Geom. Dyn. 9 (2015), 793–810.MathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    B. Seward, Every action of a non-amenable group is the factor of a small action, J. Mod. Dyn. 8 (2014), 251–270.MathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    B. Seward, Krieger’s finite generator theorem for actions of countable groups I, Invent. Math. 215 (2019), 265–310.MathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    B. Seward, Krieger’s finite generator theorem for actions of countable groups II, J. Mod. Dyn. 15 (2019), 1–39.MathSciNetzbMATHGoogle Scholar
  61. [61]
    B. Seward and R. D. Tucker-Drob, Borel structurability on the 2-shift of a countable groups, Ann. Pure Appl. Logic 167 (2016), 1–21.MathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    A. Thom, Sofic groups and Diophantine approximation, Comm. Pure Appl. Math. 61 (2008), 1155–1171.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    R. D. Tucker-Drob, Invariant means and the structure of inner amenable groups, preprint.

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Unité de Mathématiques Pures et Appliquées ENS-Lyon, CNRSUniversité de LyonLyonFrance
  2. 2.Einstein Institute of MathematicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations