Advertisement

Discretized sum-product estimates in matrix algebras

  • Weikun HeEmail author
Article
  • 5 Downloads

Abstract

We generalize Bourgain’s discretized sum-product theorem to matrix algebras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Benoist, and N. de Saxcé, A spectral gap theorem in simple Lie groups, Invent. Math. 205 (2016), 337–361.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Y. Benoist, and J.-F. Quint, Mesures stationnaires et fermés invariants des espaces homogénes, Ann. of Math. (2) 174 (2011), 1111–1162.MathSciNetCrossRefGoogle Scholar
  3. [3]
    J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), 334–365.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Bourgain, The discretized sum-product and projection theorems, J. Anal. Math. 112 (2010), 193–236.MathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Bourgain, A. Furman, E. Lindenstrauss, and S. Mozes, Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus, J. Amer.Math. Soc. 24 (2011), 231–280.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Bourgain, and A. Gamburd, On the spectral gap for finitely-generated subgroups of SU(2), Invent. Math. 171 (2008), 83–121.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Bourgain, and A. Gamburd, A spectral gap theorem in SU(d), J. Eur. Math. Soc. (JEMS) 14 (2012), 1455–1511.MathSciNetCrossRefGoogle Scholar
  8. [8]
    J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), 27–57.MathSciNetCrossRefGoogle Scholar
  9. [9]
    J. Bourgain, and P. P. Varjú, Expansion in SL d (Z/qZ), q arbitrary, Invent. Math. 188 (2012), 151–173.MathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Bourgain, and A. Yehudayoff, Expansion in SL2(R) and monotone expanders, Geom. Funct. Anal. 23 (2013), 1–41.MathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Boutonnet, A. Ioana, and A. S. Golsefidy, Local spectral gap in simple Lie groups and applications, Invent. math. 208 (2017) 715–802.MathSciNetCrossRefGoogle Scholar
  12. [12]
    E. Breuillard, Lectures on Approximate Groups, IHP, Paris, February-March 2011, available at http://www.math.u-psud.fr/~breuilla/ClermontLectures.pdf. zbMATHGoogle Scholar
  13. [13]
    M.-C. Chang, A polynomial bound in Freiman’s theorem, Duke Math. J. 113 (2002), 399–419.MathSciNetCrossRefGoogle Scholar
  14. [14]
    M.-C. Chang, Additive and multiplicative structure in matrix spaces, Combin. Probab. Comput. 16 (2007), 219–238.MathSciNetCrossRefGoogle Scholar
  15. [15]
    N. de Saxcé, A product theorem in simple Lie groups, Geom. Funct. Anal. 25 (2015), 915–941.MathSciNetCrossRefGoogle Scholar
  16. [16]
    N. de Saxcé, Borelian subgroups of simple Lie groups, Duke Math. J. 166 (2017), 573–604.MathSciNetCrossRefGoogle Scholar
  17. [17]
    G. A. Edgar, and C. Miller. Borel subrings of the reals, Proc. Amer. Math. Soc. 131 (2003), 1121–1129.MathSciNetCrossRefGoogle Scholar
  18. [18]
    P. Erdős and E. Szemerédi, On sums and products of integers, in Studies in Pure Mathematics, Birkhäuser, Basel, 1983, pp. 213–218.CrossRefGoogle Scholar
  19. [19]
    P. Erdős and B. Volkmann, Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math. 221 (1966), 203–208.MathSciNetzbMATHGoogle Scholar
  20. [20]
    A. Eskin, S. Mozes, and H. Oh, On uniform exponential growth for linear groups, Invent. Math. 160 (2005), 1–30.MathSciNetCrossRefGoogle Scholar
  21. [21]
    W. He, Orthogonal projections of discretized sets, J. Fractal Geom., to appear.Google Scholar
  22. [22]
    H. A. Helfgott, Growth and generation in SL2(Z/pZ), Ann. of Math. (2) 167 (208), 601-623.Google Scholar
  23. [23]
    N. H. Katz, and T. Tao, Some connections between Falconer’s distance set conjecture and sets of Furstenburg type, New York J.Math. 7 (2001), 149–187.MathSciNetzbMATHGoogle Scholar
  24. [24]
    S. Lang, Algebra, Springer-Verlag, New York, 2002.CrossRefGoogle Scholar
  25. [25]
    E. Lindenstrauss, and N. de Saxcé, Hausdorff dimension and subgroups of SU(2), Israel J. Math. 209 (2015), 335–354.MathSciNetCrossRefGoogle Scholar
  26. [26]
    S. Lojasiewicz, Ensembles semi-analytiques, notes from a course given in Orsay, 2006, available at https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf.zbMATHGoogle Scholar
  27. [27]
    G. Petridis, New proofs of Pl¨unnecke-type estimates for product sets in groups, Combinatorica, 32 (2012), 721–733.MathSciNetCrossRefGoogle Scholar
  28. [28]
    R. S. Pierce, Associative Algebras, Springer-Verlag, New York-Berlin, 1982.CrossRefGoogle Scholar
  29. [29]
    J.-P. Serre, Applications algébriques de la cohomologie des groupes. ii: théorie des algébres simples, in Séminaire Henri Cartan, 1950/51, Exp. 6, Secrétariat mathématique, Paris, 1950/1951, pp. 1–9.Google Scholar
  30. [30]
    T. Tao, The sum-product phenomenon in arbitrary rings, Contrib. Discrete Math. 4 (2009), 59–82.MathSciNetzbMATHGoogle Scholar
  31. [31]
    T. Tao, and V. H. Vu, Additive Combinatorics, Cambridge University Press, Cambridge, 2010.zbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques d’OrsayUniv. Paris-Sud Université Paris-SaclayOrsayFrance

Personalised recommendations