Liouville theorems for nonlinear elliptic equations in half-spaces

  • Jorge García-MeliánEmail author
  • Alexander Quaas
  • Boyan Sirakov


In this paper we study the existence of nonnegative supersolutions of the nonlinear elliptic problem −Δu + |∇u|q = λup in the half-space ℝN+, where N = 2, q > 1, p > 0 and λ > 0. We obtain Liouville theorems for positive, bounded supersolutions, depending on the exponents q and p, the dimension N, and, in some critical cases, also on the parameter λ > 0.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



J. G.-M. and A. Q. were partially supported by Ministerio de Economía y Competitividad under grants MTM2011-27998 and MTM2014-52822-P (Spain). A. Q. was also partially supported by Fondecyt Grant No. 1151180 Programa Basal, CMM. U. de Chile and Millennium Nucleus Center for Analysis of PDE NC130017.


  1. [1]
    S. Alarcón, M. Á. Burgos-Pérez, J. García-Melián and A. Quaas, Nonexistence results for elliptic equations with gradient terms, J. Differential Equations 260 (2016), 758–780.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    S. Alarcón, J. García-Melián and A. Quaas, Existence and uniqueness of solutions of nonlinear elliptic equations without growth conditions at infinity, J. Anal.Math. 118 (2012), 83–104.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    S. Alarcón, J. García-Melián and A. Quaas, Nonexistence of positive supersolutions to some nonlinear elliptic problems, J. Math. Pures Appl. 99 (2013), 618–634.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    S. Alarcón, J. García-Melián and A. Quaas, Liouville type theorems for elliptic equations with gradient terms, Milan J. Math. 81 (2013), 171–185.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    S. Alarcón, J. García-Melián and A. Quaas, Optimal Liouville theorems for supersolutions of elliptic equationswith the Laplacian, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), 129–158.MathSciNetzbMATHGoogle Scholar
  6. [6]
    S. N. Armstrong and B. Sirakov, Nonexistence of positive supersolutions of elliptic equations via the maximum principle, Comm. Partial Differential Equation 36 (2011), 2011–2047.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    S. N. Armstrong, B. Sirakov and C. K. Smart, Singular solutions of fully nonlinear elliptic equations and applications, Arch. Ration. Mech. Anal. 205 (2012), 345–394.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    C. Bandle and M. Essén, On positive solutions of Emden equations in cone-like domains, Arch. Ration. Mech. Anal. 112 (1990), 319–338.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    C. Bandle and H. Levine, On the existence and nonexistence of global solutions of reactiondiffusion equations in sectorial domains, Trans. Amer. Math. Soc. 316 (1989), 595–622.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Topol. Methods Nonlinear Anal. 4 (1994), 59–78.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    M. F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of Emden- Fowler type, Arch. Ration. Mech. Anal. 107 (1989), 293–324.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    M. F. Bidaut-Véron and S. Pohozaev, Nonexistence results and estimates for some nonlinear elliptic problems, J. Anal.Math. 84 (2001), 1–49.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    M. F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannianmanifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489–539.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    L. Boccardo, F. Murat and J. P. Puel, Résultats d’existence pour certains problèmes elliptiques quasilinéaires, Ann. Sc. Norm. Super. Pisa 11 (1984), 213–235.zbMATHGoogle Scholar
  15. [15]
    L. Boccardo, F. Murat and J. P. Puel, L stimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. 23 (1992), 326–333.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    L. Boccardo, L. Orsina and A. Porretta, Strongly coupled elliptic equations related to mean-field games systems, J. Differential Equations 261 (2016), 1796–1834.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    W. X. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), 615–622.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    M. Chipot and F. B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal. 20 (1989), 886–907.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    M. Cirant, Stationary focusing mean-field games, Comm. Partial Differential Equations 41 (2016), 1324–1346.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    A. Cutrì and F. Leoni, On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré An. Non Linéaire 17 (2000), 219–245.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    L. D’Ambrosio and E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math. 224 (2010), 967–1020.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    D. G. de Figueiredo and J. Yang, A priori bounds for positive solutions of a non-variational elliptic system, Comm. Partial Differential Equations 26 (2001), 2305–2321.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    E. I. Galakhov, Solvability of an elliptic equation with a gradient nonlinearity, Differ. Eq. 41 (2005), 693–702.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    E. I. Galakhov, Positive solutions of quasilinear elliptic equations, Math. Notes 78, (2005), 185–193.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    B. Gidas, Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, in Nonlinear Partial Differential Equations in Engineering and Applied Science, Marcel Dekker, New York, 1980, pp. 255–273.Google Scholar
  26. [26]
    B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525–598.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin–Heidelberg, 1983.zbMATHCrossRefGoogle Scholar
  28. [28]
    J. L. Kazdan and R. J. Kramer, Invariant criteria for existence of solutions to second-order quasilinear elliptic equations. Comm. Pure Appl. Math. 31 (1978), 619–645.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    V. Kondratiev, V. Liskevich and V. Moroz, Positive solutions to superlinear second-order divergence type elliptic equations in cone-like domains, Ann. Inst. Henri Poincaré Anal. Non Linéaire 22 (2005), 25–43.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    V. Kondratiev, V. Liskevich and Z. Sobol, Positive solutions to semi-linear and quasi-linear elliptic equations on unbounded domains, in Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 6, Elsevier, Amsterdam, 2008, pp. 255–273.Google Scholar
  31. [31]
    O. A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.zbMATHGoogle Scholar
  32. [32]
    Y. Li, L. Zhang, Liouville-type theorems and Harnack-type inequalities for semilinear elliptic equations, J. Anal. Math. 90 (2003), 27–87.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    P. L. Lions, Résolution des problèmes elliptiques quasilinéaires, Arch. Ration. Mech. Anal. 74 (1980), 335–353.zbMATHCrossRefGoogle Scholar
  34. [34]
    V. Liskevich, I. I. Skrypnik and I. V. Skrypnik, Positive supersolutions to general nonlinear elliptic equations in exterior domains, Manuscripta Math. 115 (2004), 521–538.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    E. Mitidieri and S. I. Pokhozhaev, A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities, Tr. Mat. Inst. Steklova 234 (2001), 1–384.MathSciNetzbMATHGoogle Scholar
  36. [36]
    P. Poláčik, P. Quittner, P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J. 139 (2007), 555–579.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007.zbMATHCrossRefGoogle Scholar
  38. [38]
    P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser, Basel, 2007.zbMATHGoogle Scholar
  39. [39]
    J. Serrin and H. Zou, Existence and non-existence results for ground states of quasilinear elliptic equations, Arch. Ration. Mech. Anal. 121 (1992), 101–130.zbMATHCrossRefGoogle Scholar
  40. [40]
    P. Souplet, Recent results and open problems on parabolic equationswith gradient nonlinearities, Electron. J. Differential Equations 2001 (2001), 1–19.Google Scholar
  41. [41]
    F. X. Voirol, Coexistence of singular and regular solutions for the equation of Chipot and Weissler, Acta Math. Univ. Comenianae 65 (1996), 53–64.MathSciNetzbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  • Jorge García-Melián
    • 1
    Email author
  • Alexander Quaas
    • 2
  • Boyan Sirakov
    • 3
  1. 1.Departamento de Análisis Matemático and Instituto Universitario de Estudios Avanzados (IUdEA) en Física Atómica, Molecular y FotónicaUniversidad de La LagunaLa LagunaSpain
  2. 2.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaísoChile
  3. 3.Departamento de MatemáticaPontifícia Universidade Católica do Rio de JaneiroRio De JaneiroBrasil

Personalised recommendations