Journal d'Analyse Mathématique

, Volume 138, Issue 1, pp 83–105 | Cite as

Weighted weak-type (1, 1) estimates for radial Fourier multipliers via extrapolation theory

  • María J. CarroEmail author
  • Carlos Domingo-Salazar


In this paper, we prove a weighted estimate for the Bochner–Riesz operator at the critical index that is stronger than the weak-type (1,1) for A1 weights, in the sense that the latter can be obtained via extrapolation arguments from the former. In addition, this estimate can be transferred to averages in order to deduce weighted weak-type (1,1) results for general radial Fourier multipliers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Carbery, G. Gasper and W. Trebels, Radial Fourier multipliers of L p(ℝ2), Proc. Natl. Acad. Sci. USA 81 (1984), 3254–3255.CrossRefGoogle Scholar
  2. [2]
    M. J. Carro, From restricted weak-type to strong-type estimates, J. LondonMath. Soc. 70 (2004), 750–762.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. J. Carro, L. Grafakos and J. Soria, Weighted weak-type (1, 1) estimates via Rubio de Francia extrapolation, J. Funct. Anal. 269 (2015), 1203–1233.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. J. Carro and J. Soria, Restricted weak-type Rubio de Francia extrapolation for p > p 0 with applications to exponential integrability estimates, Adv. Math 290 (2016), 888–918.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Christ, Weak type (1, 1) bounds for rough operators, Ann. of Math. 128 (1988), 19–42.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    M. Christ, Lp bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc. 328 (1991), 73–81.MathSciNetzbMATHGoogle Scholar
  7. [7]
    D. Cruz-Uribe, J. M. Martell and C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory, Advances and Applications, Vol. 215, Birkhäuser, Basel, 2011.zbMATHGoogle Scholar
  8. [8]
    D. Cruz-Uribe and C. J. Neugebauer, The structure of the reverse Hölder classes, Trans. Amer. Math. Soc. 347 (1995), 2941–2960.MathSciNetzbMATHGoogle Scholar
  9. [9]
    H. Dappa and W. Trebels, On maximal functions generated by Fourier multipliers, Ark. Mat. 23 (1985), 241–259.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics, Vol. 29, American Mathematical Society, Providence, RI, 2001.Google Scholar
  11. [11]
    J. Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal. 260 (2011), 1886–1901.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J. Duoandikoetxea, A. Moyua, O. Oruetxebarria and E. Seijo, Radial Ap weights with applications to the disc multiplier and the Bochner–Riesz operators, Indiana Univ. Math. J. 57 (2008), 1261–1281.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    G. Gasper and W. Trebels, A characterization of localized Bessel potential spaces and applications to Jacobi and Hankel multipliers, Studia Math. 65 (1979), 243–278.Google Scholar
  14. [14]
    L. Grafakos, Classical and Modern Fourier Analysis, Graduate Texts in Mathematics, Vol. 249, Springer, New York, 2008.Google Scholar
  15. [15]
    L. Hörmander, Estimates for translation invariant operators in Lp spaces, ActaMath. 104 (1960), 93–139.zbMATHGoogle Scholar
  16. [16]
    R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1982), 277–284.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D. Kurtz, Littlewood–Paley and multiplier theorems on weighted Lp spaces, Trans. Amer. Math. Soc. 259 (1980), 235–254.MathSciNetzbMATHGoogle Scholar
  18. [18]
    D. Kurtz and R. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Lacey, An elementary proof of the A2 Bound, Israel J. Math. 217 (2017), 181–195.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    B. Muckenhoupt, Weighted norm inequalities for the Hardymaximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.Google Scholar
  21. [21]
    C. Pérez, Singular integrals and weights, inHarmonic and Geometric Analysis, Advanced Courses in Mathematics - CRM Barcelona, Birkhaüser, Basel, 2015, pp. 91–143.CrossRefzbMATHGoogle Scholar
  22. [22]
    A. Seeger, Estimates near L1 for Fourier multipliers and maximal functions, Arch. Math. 53 (1989), 188–193.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Seeger, Notes on Radial and Quasiradial Fourier Multipliers,
  24. [24]
    X. Shi and Q. Sun, Weighted norm inequalities for Bochner–Riesz operators and singular integral operators, Proc. Amer. Math. Soc. 116 (1992), 665–673.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    T. Tao and J. Wright, Endpoint multiplier theorems of Marcinkiewicz type, Rev. Mat. Iberoam. 17 (2001), 521–558.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    W. Trebels, Some necessary conditions for radial Fourier multipliers, Proc. Amer. Math. Soc. 58 (1976), 97–103.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    W. Trebels, Multipliers for (C, α)-Bounded Fourier Expansions in Banach Spaces and Approximation Theory, Lecture Notes in Mathematics, Vol. 329, Springer, New York, 1973.Google Scholar
  28. [28]
    A. Vargas, Weighted weak type (1,1) bounds for rough operators, J. LondonMath. Soc. 54 (1996), 297–310.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Departament de Matematiques i InformaticaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations