Journal d'Analyse Mathématique

, Volume 137, Issue 1, pp 373–427 | Cite as

Donoghue-type m-functions for Schrödinger operators with operator-valued potentials

  • Fritz GesztesyEmail author
  • Sergey N. Naboko
  • Rudi Weikard
  • Maxim Zinchenko


Given a complex, separable Hilbert space \(\mathcal{H}\), we consider differential expressions of the type τ = −(d2/dx2)\(I_\mathcal{H}\) + V(x), with x ∈ (x0,∞) for some x0 ∈ ℝ, or x ∈ ℝ (assuming the limit-point property of τ at ±∞). Here V denotes a bounded operator-valued potential V(·) ∈ \(\mathcal{B}(\mathcal{H})\) such that V(·) is weakly measurable, the operator norm \(||V(\cdot)||_{\mathcal{B}(\mathcal{H})}\) is locally integrable, and V(x) = V(x)* a.e. on x ∈ [x0,∞) or x ∈ ℝ. We focus on two major cases. First, on m-function theory for self-adjoint half-line L2-realizations H+,α in L2((x0,∞); dx;\(\mathcal{H}\)) (with x0 a regular endpoint for τ, associated with the self-adjoint boundary condition sin(α)u′(x0) + cos(α)u(x0) = 0, indexed by the selfadjoint operator α = α* ∈ \(\mathcal{B}(\mathcal{H})\)), and second, on m-function theory for self-adjoint full-line L2-realizations H of τ in L2(ℝ; dx;\(\mathcal{H}\)).

In a nutshell, a Donoghue-type m-function \(M^{Do}_{A,\mathcal{N}{_i}}(\cdot)\) associated with self-adjoint extensions A of a closed, symmetric operator \(\dot{A}\) in \(\mathcal{H}\) with deficiency spaces Nz = ker (\(\dot{A}\) * −zI\(\mathcal{H}\)) and corresponding orthogonal projections \({P_{{N_z}}}\) onto Nz is given by
$$\begin{gathered} M_{A,{\mathcal{N}_i}}^{Do}(z) = {P_{{\mathcal{N}_i}}}(zA + {I_\mathcal{H}})(A) - z{I_\mathcal{H}}{)^{ - 1}}{P_{{\mathcal{N}_i}|{\mathcal{N}_i}}} \hfill \\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = z{I_{{\mathcal{N}_i}}} + ({z^2} + 1){P_{{N_i}}}{(A - z{I_\mathcal{H}})^{ - 1}}{P_{{N_i}|{\mathcal{N}_i}}},\;\;\;z \in \mathbb{C}\backslash \mathbb{R}. \hfill \\ \end{gathered}$$

In the concrete case of half-line and full-line Schrödinger operators, the role of \(\dot{A}\) is played by a suitably defined minimal Schrödinger operator H+,min in L2((x0,∞); dx;\(\mathcal{H}\)) and Hmin in L2(ℝ; dx;\(\mathcal{H}\)), both of which will be proven to be completely non-self-adjoint. The latter property is used to prove that if H+,α in L2((x0,∞); dx;\(\mathcal{H}\)), respectively, H in L2(ℝ; dx;\(\mathcal{H}\)), are self-adjoint extensions of H+,min, respectively, Hmin, then the corresponding operator-valued measures in the Herglotz–Nevanlinna representations of the Donoghue-type m-functions \(M^{Do}_{H+,\alpha},\mathcal{N_{+,i}}(\cdot)\) and \(M^{Do}_{H,\mathcal{N}{_i}}(\cdot)\) encode the entire spectral information of H+,α, respectively, H.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. M. Adamjan and H. Langer, Spectral properties of a class of rational operator valued functions, J. Operator Th. 33 (1995), 259–277.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of Scattering Theory, Gordon and Breach, New York, 1963.zbMATHGoogle Scholar
  3. [3]
    A. R. Aliev, On the generalized solution of the boundary-value problem for the operatordifferential equations of the second order with variable coefficients, J. Math. Phys. Anal. Geom. 2 (2006), 87–93.Google Scholar
  4. [4]
    A. R. Aliev and S. S. Mirzoev, On boundary value problem solvability theory for a class of high-order operator-differential equations, Funct. Anal. Appl. 44 (2010), 209–211.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    G. D. Allen and F. J. Narcowich, On the representation and approximation of a class of operatorvalued analytic functions, Bull. Amer. Math. Soc. 81 (1975), 410–412.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    G. D. Allen and F. J. Narcowich, R-operators I. Representation theory and applications, Indiana Univ. Math. J. 25 (1976), 945–963.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    D. Alpay and J. Behrndt, Generalized Q-functions and Dirichlet-to-Neumann maps for elliptic differential operators, J. Funct. Anal. 257 (2009), 1666–1694.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Basel, 1995.CrossRefzbMATHGoogle Scholar
  9. [9]
    W. O. Amrein and D. B. Pearson, M operators: a generalization of Weyl–Titchmarsh theory, J. Comp. Appl. Math. 171 (2004), 1–26.CrossRefzbMATHGoogle Scholar
  10. [10]
    W. Arendt, C. K. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Transforms, Birkhäuser, Basel, 2001.CrossRefzbMATHGoogle Scholar
  11. [11]
    Yu. Arlinskii, S. Belyi, and E. Tsekanovskii, Conservative Realizations of Herglotz–Nevanlinna Functions, Operator Theory: Advances and Applications, Vol. 217, Birkhäuser, Springer, Basel, 2011.Google Scholar
  12. [12]
    H. Baumgärtel and M. Wollenberg, Mathematical Scattering Theory, Operator Theory: Advances and Applications, Vol. 9, Birkhäuser, Boston, 1983.Google Scholar
  13. [13]
    J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal. 243 (2007), 536–565.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J. Behrndt and T. Micheler, Elliptic differential operators on Lipschitz domains and abstract boundary value problems, J. Funct. Anal. 267 (2014), 3657–3709.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Behrndt and J. Rohleder, Spectral analysis of selfadjoint elliptic differential operators, Dirichlet-to-Neumann maps, and abstract Weyl functions, Adv. Math. 285 (2015), 1301–1338.zbMATHGoogle Scholar
  16. [16]
    J. Behrndt and J. Rohleder, Titchmarsh–Weyl theory for Schrödinger operators on unbounded domains, J. Spectral Theory 6 (2016), 67–87.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J. Behrndt and C. Trunk, On the negative squares of indefinite Sturm–Liouville operators, J.Diff. Eq. 238 (2007), 491–519.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Benguria and M. Loss, A simple proof of a theorem of Laptev and Weidl, Math. Res. Lett. 7 (2000), 195–203.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Ju. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Transl. Math. Monographs, Vol. 17, Amer. Math. Soc., Providence, RI, 1968.CrossRefGoogle Scholar
  20. [20]
    M. Sh. Birman, S. B. Entina, The stationary method in the abstract theory of scattering theory, Math. SSSR Izv. 1 (1967), 391–420.CrossRefGoogle Scholar
  21. [21]
    M. S. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Reidel, Dordrecht, 1987.Google Scholar
  22. [22]
    J. F. Brasche, M. Malamud, and H. Neidhardt, Weyl function and spectral properties of selfadjoint extensions, Integr. Eq. Oper. Th. 43 (2002), 264–289.CrossRefzbMATHGoogle Scholar
  23. [23]
    M. S. Brodskii, Triangular and Jordan Representations of Linear Operators, Transl. Math. Monographs, Vol. 32, Amer. Math. Soc., Providence, RI, 1971.Google Scholar
  24. [24]
    B. M. Brown, G. Grubb, and I. G. Wood, M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems, Math. Nachr. 282 (2009), 314–347.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    B. M. Brown, J. Hinchcliffe,M.Marletta, S. Naboko, and I. Wood, The abstract Titchmarsh–Weyl M-function for adjoint operator pairs and its relation to the spectrum, Integral Equ. Operator Theory 63 (2009), 297–320.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    B. M. Brown, M. Marletta, S. Naboko, and I. Wood, Boundary triplets and M-functions for nonselfadjoint operators, with applications to elliptic PDEs and block operator matrices, J. London Math. Soc. (2) 77 (2008), 700–718.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    B. M. Brown, M. Marletta, S. Naboko, and I. Wood, Inverse problems for boundary triples with applications, Studia Math. 237 (2017), 241–275.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J. Brüning, V. Geyler, and K. Pankrashkin, Spectra of self-adjoint extensions and applications to solvable Schrödinger operators, Rev. Math. Phys. 20 (2008), 1–70.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D. Buschmann, Spektraltheorie verallgemeinerter Differentialausdrücke-Ein neuer Zugang, Ph.D. Thesis, University of Frankfurt, Germany, 1997.Google Scholar
  30. [30]
    R. W. Carey, A unitary invariant for pairs of self-adjoint operators, J. Reine Angew. Math. 283 (1976), 294–312.Google Scholar
  31. [31]
    Ju. L. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Transl. Math. Monographs, Vol. 43, Amer. Math. Soc., Providence, RI, 1974.Google Scholar
  32. [32]
    L. de Branges, Perturbations of self-adjoint transformations, Amer. J.Math. 84 (1962), 543–560.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    S. A. Denisov, Schrödinger operators and associated hyperbolic pencils, J. Funct. Anal. 254 (2008), 2186–2226.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    V. Derkach, S. Hassi, and M. Malamud, Invariance theorems for Nevanlinna families, ArXiv:1503.05606v2[math.FA].Google Scholar
  35. [35]
    V. Derkach, S. Hassi, M. Malamud, and H. de Snoo, Boundary relations and generalized resolvents of symmetric operators, Russian J. Math. Phys. 16 (2009), 17–60.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    V. A. Derkach and M. M. Malamud, On the Weyl function and Hermitian operators with gaps, Sov. Math. Dokl. 35 (1987), 393–398.zbMATHGoogle Scholar
  37. [37]
    V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), 1–95.MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    V. A. Derkach and M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), 141–242.MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    V. A. Derkach and M. M. Malamud, On some classes of holomorphic operator functions with nonnegative imaginary part, in Operator Algebras and Related Topics, 16th International Conference on Operator Theory, A. Gheondea, R. N. Gologan, and T. Timotin (eds.), The Theta Foundation, Bucharest, 1997, pp. 113–147.Google Scholar
  40. [40]
    V. A. Derkach and M. M. Malamud, Weyl function of a Hermitian operator and its connection with characteristic function, arXiv:1503.08956v[math.SP].Google Scholar
  41. [41]
    V. A. Derkach, M. M. Malamud, and E. R. Tsekanovskii, Sectorial extensions of a positive operator, and the characteristic function, Sov. Math. Dokl. 37 (1988), 106–110.MathSciNetzbMATHGoogle Scholar
  42. [42]
    A. Dijksma, H. Langer, and H. de Snoo, Hamiltonian systems with eigenvalue depending boundary conditions, in Contributions to Operator Theory and its Applications, I. Gohberg, J. W. Helton, and L. Rodman (eds.), Operator Theory: Advances and Applications, Vol. 35, Birkhäuser, Basel, 1988, pp. 37–83.Google Scholar
  43. [43]
    J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, RI, 1977.CrossRefzbMATHGoogle Scholar
  44. [44]
    J. Dieudonné, Foundations of Modern Analysis, Pure and Appl. Math., Vol. 10, Academic Press, New York, 1960.Google Scholar
  45. [45]
    W. F. Donoghue, On the perturbation of spectra, Commun. Pure Appl. Math. 18 (1965), 559–579.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    N. Dunford and J. T. Schwartz, Linear Operators Part II: Spectral Theory, Interscience, New York, 1988.zbMATHGoogle Scholar
  47. [47]
    F. Gesztesy, N. J. Kalton, K. A. Makarov, and E. Tsekanovskii, Some applications of operatorvalued Herglotz functions, in Operator Theory, System Theory and Related Topics. The Moshe Livšic Anniversary Volume, D. Alpay and V. Vinnikov (eds.), Operator Theory: Adv. Appl., Vol. 123, Birkhäuser, Basel, 2001, pp. 271–321. Operator Theory, System Theory and Related Topics, Birkhäuser, Basel, 2001, pp. 271–321.Google Scholar
  48. [48]
    F. Gesztesy, K. A. Makarov, and E. Tsekanovskii, An Addendum to Krein’s formula, J. Math. Anal. Appl. 222 (1998), 594–606.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    F. Gesztesy and E. Tsekanovskii, On matrix-valued Herglotz functions, Math.Nachr. 218 (2000), 61–138.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    F. Gesztesy, R. Weikard, and M. Zinchenko, Initial value problems and Weyl–Titchmarsh theory for Schrödinger operators with operator-valued potentials, Operators and Matrices 7 (2013), 241–283.MathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    F. Gesztesy, R. Weikard, and M. Zinchenko, On a class of model Hilbert spaces, Discrete Cont. Dyn. Syst. A 33 (2013), 5067–5088.MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    F. Gesztesy, R. Weikard, and M. Zinchenko, On spectral theory for Schrödinger operators with operator-valued potentials, J. Diff. Eq. 255 (2013), 1784–1827.CrossRefzbMATHGoogle Scholar
  53. [53]
    R. C. Gilbert, Simplicity of linear ordinary differential operators, J.Diff.Eq. 11 (1072), 672–681.MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    M. L. Gorbachuk, On spectral functions of a second order differential operator with operator coefficients, Ukrain. Math. J. 18 No. 2, (1966), 3–21. (Russian); Engl. transl. in Amer. Math. Soc. Transl. (2) 72 (1968), 177–202.zbMATHGoogle Scholar
  55. [55]
    M. L. Gorbachuk, Self-adjoint boundary problems for a second-order differential equation with unbounded operator coefficient, Funct. Anal. Appl. 5 (1971), 9–18.CrossRefzbMATHGoogle Scholar
  56. [56]
    V. I. Gorbačuk and M. L. Gorbačuk, Expansion in eigenfunctions of a second-order differential equation with operator coefficients, Sov. Math. Dokl. 10 (1969), 158–162.Google Scholar
  57. [57]
    V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Kluwer, Dordrecht, 1991.CrossRefzbMATHGoogle Scholar
  58. [58]
    M. L. Gorbachuk and V. A. Mihailec, Semibounded selfadjoint extensions of symmetric operators, Sov. Math. Dokl. 17 (1976), 185–187.zbMATHGoogle Scholar
  59. [59]
    S. Hassi, M. Kaltenbäck, and H. de Snoo, Generalized finite rank perturbations associated with Kac classes of matrix Nevanlinna functions, unpublished manuscript.Google Scholar
  60. [60]
    S. Hassi, M. Malamud, and V. Mogilevskii, Unitary equivalence of proper extensions of a symmetric operator and the Weyl function, Integral Equ. Operator Theory 77 (2013), 449–487.MathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Colloquium Publications, Vol. 31, rev. ed., Amer. Math. Soc., Providence, RI, 1985.Google Scholar
  62. [62]
    D. Hinton and A. Schneider, On the spectral representation for singular selfadjoint boundary eigenvalue problems, in Contributions to Operator Theory in Spaces with an Indefinite Metric, A. Dijksma, I. Gohberg, M. A. Kaashoek, R. Mennicken (eds.), Operator Theory: Advances and Applications, Vol. 106, Birkhäuser, Basel, 1998, pp. 217–251.Google Scholar
  63. [63]
    I. S. Kac and M. G. Krein, R-functions–analytic functions mapping the upper halfplane into itself, Amer. Math. Soc. Transl. (2) 103 (1974), 1–18.zbMATHGoogle Scholar
  64. [64]
    A. G. Kostyuchenko and B. M. Levitan, Asymptotic behavior of the eigenvalues of the Sturm–Liouville operator problem, Funct. Anal. Appl. 1 (1967), 75–83.CrossRefzbMATHGoogle Scholar
  65. [65]
    M. G. Krein, Concerning the resolvents of an Hermitian operator with the deficiency-index (m,m), Comptes Rendue (Doklady) Acad. Sci. URSS (N.S.), 52 (1946), 651–654 (Russian).MathSciNetzbMATHGoogle Scholar
  66. [66]
    M. G. Krein, Fundamental aspects of the representation theory of Hermitian operators with deficiency index (m,m), Ukrain. Mat. Z. 1 (1949), 3–66 (Russian); Engl. transl. in Amer. Math. Soc. Transl. Ser. 2 97 (1971), 75–143.zbMATHGoogle Scholar
  67. [67]
    M. G. Krein and H. Langer, Defect subspaces and generalized resolvents of an Hermitian operator in the space κ, Funct. Anal. Appl. 5 (1971), 136–146, 217–228.MathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    M. G. Krein and I. E. Ovčarenko, Q-functions and sc-resolvents of nondensely defined Hermitian contractions, Sib. Math. J. 18 (1977), 728–746.Google Scholar
  69. [69]
    M. G. Krein and I. E. Ovčarenko, Inverse problems for Q-functions and resolvent matrices of positive Hermitian operators, Sov. Math. Dokl. 19 (1978), 1131–1134.Google Scholar
  70. [70]
    H. Langer and B. Textorius, On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space, Pacific J. Math. 72 (1977), 135–165.MathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    A. Laptev and T. Weidl, Sharp Lieb–Thirring inequalities in high dimensions, Acta Math. 184 (2000), 87–111.MathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    M. M. Malamud, Certain classes of extensions of a lacunary Hermitian operator, Ukrain. Math. J. 44 (1992), 190–204.MathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    M. M. Malamud, On a formula of the generalized resolvents of a nondensely defined hermitian operator, Ukrain. Math. J. 44 (1992), 1522–1547.MathSciNetCrossRefGoogle Scholar
  74. [74]
    M. M. Malamud and S. M. Malamud, On the spectral theory of operator measures, Funct. Anal. Appl. 36 (2002), 154–158.MathSciNetCrossRefzbMATHGoogle Scholar
  75. [75]
    M. M. Malamud and S. M. Malamud, On the spectral theory of operator measures in Hilbert space, St. Petersburg Math. J. 15 (2004), 323–373.MathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    M. Malamud and H. Neidhardt, On the unitary equivalence of absolutely continuous parts of self-adjoint extensions, J. Funct. Anal. 260 (2011), 613–638.MathSciNetCrossRefzbMATHGoogle Scholar
  77. [77]
    M. Malamud and H. Neidhardt, Sturm–Liouville boundary value problems with operator potentials and unitary equivalence, J. Diff. Eq. 252 (2012), 5875–5922.MathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    M. Marletta, Eigenvalue problems on exterior domains and Dirichlet to Neumann maps, J. Comp. Appl. Math. 171 (2004), 367–391.MathSciNetCrossRefzbMATHGoogle Scholar
  79. [79]
    J. Mikusi´nski, The Bochner Integral, Academic Press, New York, 1978.CrossRefGoogle Scholar
  80. [80]
    V. I. Mogilevskii, Description of spectral functions of differential operators with arbitrary deficiency indices, Math. Notes 81 (2007), 553–559.MathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    V. Mogilevskii, Boundary triplets and Titchmarsh–Weyl functions of differential operators with arbitrary deficiency indices, Meth. Funct. Anal. Topology 15 (2009), 280–300.MathSciNetzbMATHGoogle Scholar
  82. [82]
    V. Mogilevskii, Minimal spectral functions of an ordinary differential operator, Proc. Edinburgh Math. Soc. 55 (2012), 731–769.MathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    S. N. Naboko, Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model, Ark. Mat. 25 (1987), 115–140.MathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    S. N. Naboko, Boundary values of analytic operator functions with a positive imaginary part, J. Soviet Math. 44 (1989), 786–795.MathSciNetCrossRefzbMATHGoogle Scholar
  85. [85]
    S. N. Naboko, Nontangential boundary values of operator-valued R-functions in a half-plane, Leningrad Math. J. 1 (1990), 1255–1278.MathSciNetzbMATHGoogle Scholar
  86. [86]
    S. N. Naboko, The boundary behavior ofSp-valued functions analytic in the half-plane with nonnegative imaginary part, Functional Analysis and Operator Theory, Banach Center Publications, Vol. 30, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1994, pp. 277–285.zbMATHGoogle Scholar
  87. [87]
    F. J. Narcowich, Mathematical theory of the R matrix. II. The R matrix and its properties, J.Math. Phys. 15 (1974), 1635–1642.MathSciNetCrossRefGoogle Scholar
  88. [88]
    F. J. Narcowich, R-operators II. On the approximation of certain operator-valued analytic functions and the Hermitian moment problem, Indiana Univ. Math. J. 26 (1977), 483–513.MathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    F. J. Narcowich and G. D. Allen, Convergence of the diagonal operator-valued Padé approximants to the Dyson expansion, Commun. Math. Phys. 45 (1975), 153–157.CrossRefzbMATHGoogle Scholar
  90. [90]
    K. Pankrashkin, An example of unitary equivalence between self-adjoint extensions and their parameters, J. Funct. Anal. 265 (2013), 2910–2936.MathSciNetCrossRefzbMATHGoogle Scholar
  91. [91]
    B. J. Pettis On integration in vector spaces, Trans. Amer.Math. Soc. 44 (1938), 277–304.MathSciNetCrossRefzbMATHGoogle Scholar
  92. [92]
    A. I. Plesner and V. A. Rohlin, Spectral theory of linear operators, Uspehi Matem. Nauk (N. S.) 1(11), No. 1 (1946), 71–191. (Russian); Engl. transl. in Amer. Math. Soc. Transl. (2), 62 (1967), 29–175 (1967).MathSciNetGoogle Scholar
  93. [93]
    A. Posilicano, Boundary triples and Weyl functions for singular perturbations of self-adjoint operators, Meth. Funct. Anal. Topology 10 (2004), 57–63.MathSciNetzbMATHGoogle Scholar
  94. [94]
    C. Remling, Spectral analysis of higher order differential operators I: General properties of the M-function, J. London Math. Soc. 58 (1998), 367–380.MathSciNetCrossRefzbMATHGoogle Scholar
  95. [95]
    F. S. Rofe-Beketov, Expansions in eigenfunctions of infinite systems of differential equations in the non-self-adjoint and self-adjoint cases, Mat. Sb. 51 (1960), 293–342 (Russian).MathSciNetGoogle Scholar
  96. [96]
    F. S. Rofe-Beketov and A. M. Kholkin, Spectral Analysis of Differential Operators. Interplay Between Spectral and Oscillatory Properties, World Scientific, Singapore, 2005.CrossRefzbMATHGoogle Scholar
  97. [97]
    V. Ryzhov, A general boundary value problem and its Weyl function, Opuscula Math. 27 (2007), 305–331.MathSciNetGoogle Scholar
  98. [98]
    Sh. N. Saakjan, Theory of resolvents of a symmetric operator with infinite defect numbers, Akad. Nauk. Armjan. SSR Dokl. 41 (1965), 193–198.MathSciNetGoogle Scholar
  99. [99]
    Y. Saitō, Eigenfunction expansions associated with second-order differential equations for Hilbert space-valued functions, Publ. RIMS, Kyoto Univ. 7 (1971/72), 1–55.Google Scholar
  100. [100]
    Yu. L. Shmul’yan, On operator R-functions, Siberian Math. J. 12 (1971), 315–322.CrossRefzbMATHGoogle Scholar
  101. [101]
    I. Trooshin, Asymptotics for the spectral and Weyl functions of the operator-valued Sturm–Liouville problem, in Inverse Problems and Related Topics, G. Nakamura, S. Saitoh, J. K. Seo, and M. Yamamoto (eds.), Chapman & Hall/CRC, Boca Raton, Fl, 2000, pp. 189–208.Google Scholar
  102. [102]
    E. R. Tsekanovskii, Accretive extensions and problems on the Stieltjes operator-valued functions realizations, in Operator Theory and Complex Analysis, T. Ando and I. Gohberg (eds.), Operator Theory: Advances and Applications, Vol. 59, Birkhäuser, Basel, 1992, pp. 328–347.Google Scholar
  103. [103]
    L. I. Vainerman and M. L. Gorbachuk, ”Uber gewöhnliche Differentialgleichungen mit Singularit äten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910), 220–269.MathSciNetCrossRefGoogle Scholar
  104. [104]
    K. Yosida, Functional Analysis, 6th ed., Springer, Berlin, 1980.zbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  • Fritz Gesztesy
    • 1
    Email author
  • Sergey N. Naboko
    • 2
  • Rudi Weikard
    • 3
  • Maxim Zinchenko
    • 4
  1. 1.Department of MathematicsUniversity of MissouriColumbiaUSA
  2. 2.Department of Mathematical PhysicsSt. Petersburg State UniversitySt. PetersburgRussian Federation
  3. 3.Department of MathematicsUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations