Journal d'Analyse Mathématique

, Volume 137, Issue 1, pp 231–249 | Cite as

Sign-changing solutions of an elliptic system with critical exponent in dimension N = 5

  • Shuangjie Peng
  • Yanfang PengEmail author
  • Qingfang Wang


We study the following elliptic system with critical exponent: \(\left\{ {\begin{array}{*{20}{c}} { - \Delta u = {\lambda _1}u + {u_1}|u{|^{2*-2}}u + \beta |u{{|^{\frac{{2*}}{2} - 2}{{u|v|}}^{\frac{{2*}}{2}}}},\;\;x \in \Omega } \\ { - \Delta v = {\lambda _2}v + {u_2}|v{|^{2*-2}}v + \beta |v{{|^{\frac{{2*}}{2} - 2}{{v|u|}}^{\frac{{2*}}{2}}}},\;\;x \in \Omega } \\ \;\;\;\;\;\;\; {u = v = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \Omega ,} \end{array}} \right.\;\;\) where Ω is a smooth bounded domain in \(\mathbb{R}^N,\;N=5,2*:=\frac{2N}{N-2}\) is the critical Sobolev exponent, μ1,μ2 > 0, \(\beta \in ( - \sqrt {{\mu _1},{\mu _2}} ,0)\), 0 < λ1, λ2 < λ1(Ω), λ1(Ω) is the first eigenvalue of —Δ in \(H^1_0(\Omega)\). In [10], Chen, Lin and Zou established a sign-changing solution of the above system in the case N ≥ 6 for β < 0 and λ1, λ2 ∈ (0, λ1(Ω)). We show that in dimension N = 5, for λ1 and λ2 slightly smaller than λ1(Ω), the above system has a sign-changing solution in the following sense: one component changes sign and has exactly two nodal domains, while the other one is positive.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), 2661–2664.CrossRefGoogle Scholar
  2. [2]
    A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. 75 (2007), 67–82.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    F. Atkinson, H. Brezis, and L. Peletier, Nodal solutions of elliptic equations with the critical Sobolev exponents, J. Differential Equations 85 (1990), 151–170.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Bartsch, N. Dancer, and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations 37 (2010), 345–361.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    T. Bartsch and Z.-Q. Wang, Note on ground states of nonlinear elliptic Schrödinger systems, J. Partial Differential Equations 19 (2006), 200–207.MathSciNetzbMATHGoogle Scholar
  6. [6]
    T. Bartsch, Z.-Q. Wang, and J. Wei, Bounded states for a coupled Schrödinger system, J. Fixed point Theory Appl. 2 (2007), 353–367.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    H. Brezis, and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    G. Cerami, S. Solimini, and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), 289–306.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Z. Chen, C.-S. Lin, and W. Zou, Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations, J. Differential Equations 255 (2013), 4289–4311.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Z. Chen, C.-S. Lin, and W. Zou, Sign-changing solutions and phase separation for an elliptic system with critical exponent, Comm. Partial Differential Equations 39 (2014), 1827–1859.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Z. Chen, C.-S. Lin, and W. Zou, Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrödinger system, Ann. Sc. Norm. Super. Pisa Cl. Sci. 15 (2016), 859–897.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Z. Chen and W. Zou, Positive least energy solutions and phase seperation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal. 205 (2012), 515–551.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Z. Chen and W. Zou, An optimal constant for the existence of least energy solutions of a coupled Schrödinger system, Calc. Var. Partial Differential Equations 48 (2013), 695–711.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Z. Chen and W. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent:higer dimensional case Calc, Var. Partial Differential Equations 52 (2015), 423–467.CrossRefzbMATHGoogle Scholar
  15. [15]
    N. Dancer, J. Wei, and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), 953–969.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    G. Devillanova and S. Solimini, A multiplicity result for elliptic equations at critical growth in low dimension, Comm. Contemp. Math. 5 (2003), 171–177.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    B. Esry, C. Greene, J. Burke, and J. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594–3597.CrossRefGoogle Scholar
  18. [18]
    S. Kim, On vector solutions for coupled nonlinear Schrödinger equations with critical exponents, Comm. Pure Appl. Anal. 12 (2013), 1259–1277.CrossRefzbMATHGoogle Scholar
  19. [19]
    Y. Kivshar and B. Luther-Davies, Dark optical solitons: physics and applications, Physics Reports 298 (1998), 81–197.CrossRefGoogle Scholar
  20. [20]
    Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys. 282 (2008), 721–731.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    T. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in Rn, n ≤ 3, Comm. Math. Phys. 255 (2005), 629–653.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    T. Lin and J. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 403–439.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    C. Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quantum Electron. 23 (1987), 174–176.CrossRefGoogle Scholar
  24. [24]
    A. Pomponio, Coupled nonlinear Schrödinger systems with potentials, J. Differential Equations 227 (2006), 258–281.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    P. Roselli and M. Willem, Least energy nodal solutions of the Brezis-Nirenberg problem in dimension N = 5, Comm. Contemp. Math. 11 (2009), 59–69.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    G. Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent, Differential Integral Equations 5 (1992), 25–42.MathSciNetzbMATHGoogle Scholar
  27. [27]
    J Wei and T. Weth, Asymptotic behavior of solutions of planar elliptic systems with strong competition, Nonlinearity 21 (2008), 305–317.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    D. Zhang, On multiple solutions of \(\Delta{u}+\lambda{u}+|u|\frac{4}{n-2}{u}=0\), Nonlinear Anal. TMA. 13 (1989), 353–372.CrossRefGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCentral China Normal UniversityWuhan, HubeiChina
  2. 2.School of Mathematical SciencesGiuzhou Normal UniversityGuiyang, GuizhouChina
  3. 3.School of Mathematics and Computer ScienceWuhan Polytechnic UniveristyWuhan, HubeiChina

Personalised recommendations