Journal d'Analyse Mathématique

, Volume 137, Issue 1, pp 189–209 | Cite as

The differentiation operator from model spaces to Bergman spaces and Peller type inequalities

  • Anton BaranovEmail author
  • Rachid Zarouf


Given an inner function Θ on the unit disc \(\mathbb{D}\), we study the boundedness of the differentiation operator which acts from the model subspace KΘ = (ΘH2) of the Hardy space H2, equipped with the BMOA-norm to some radial-weighted Bergman space. As an application, we generalize Peller’s inequality for Besov norms of rational functions f of degree n ≥ 1 having no poles in the closed unit disc \(\overline{\mathbb{D}}\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ah1]
    P. R. Ahern, The mean modulus and derivative of an inner function, Indiana University Math. J. 28 (1979), 311–347.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Ah2]
    P. R. Ahern, The Poisson integral of a singular measure, Canad. J. Math. 25 (1983), 735–749.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [AC1]
    P. R. Ahern and D. N. Clark, On inner functions with Hp derivative, Michigan Math. J. 21 (1974), 115–127.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [AC2]
    P. R. Ahern and D. N. Clark, On inner functions with Bp derivative, Michigan Math. J. 23 (1976), 107–118.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [AV]
    A. Aleman and D. Vukotić, On Blaschke products with derivatives in Bergman spaces with normal weights, J. Math. Anal. Appl. 361 (2010), 492–505.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [AFP]
    J. Arazy, S. D. Fisher, and J. Peetre, Besov Norms of Rational Functions, Springer-Verlag, Berlin, 1988, pp. 125–129.CrossRefzbMATHGoogle Scholar
  7. [Bae]
    A. Baernstein II, Analytic functions of bounded mean oscillation, in Aspects of Contemporary Complex Analysis, Academic Press, London, 1980, pp. 3–36.Google Scholar
  8. [BaZa]
    A. Baranov and R. Zarouf, A model spaces approach to some classical inequalities for rational functions, J. Math. Anal. Appl. 418 (2014), 121–141.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [BeLo]
    J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, Berlin, 1976.CrossRefzbMATHGoogle Scholar
  10. [Dol]
    E. P. Dolzhenko,Rational approximations and boundary properties of analytic functions, Mat. Sb. 69(111) (1966), 4, 497–524.Google Scholar
  11. [Dyn]
    E. M. Dyn’kin, Rational functions in Bergman spaces, in Complex Analysis, Operators, and Related Topics, Birkhäuzer, Basel, 2000, pp. 77–94.Google Scholar
  12. [GPV]
    D. Girela, J. A. Peláez, and D. Vukotić, Integrability of the derivative of a Blaschke product, Proc. Edinb. Math. Soc. 50 (2007), 673–687.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Glu]
    A. Gluchoff, On inner functions with derivatives in Bergman spaces, Illinois J. Math. 31 (1987), 518–528.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Gar]
    J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.zbMATHGoogle Scholar
  15. [HLP]
    G. Hardy, J. Littlewood, and G. P´olya, Inequalities, Cambridge, 1934.Google Scholar
  16. [HKZ]
    H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Springer-Verlag, New York, 2000.CrossRefzbMATHGoogle Scholar
  17. [Nik]
    N. Nikolski, Operators, Functions, and Systems: an Easy Reading, Vol.1, Amer. Math. Soc. Monographs and Surveys, 2002.zbMATHGoogle Scholar
  18. [Pee]
    J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Ser., No. 1, Math. Dept., Duke Univ., Durham, NC, 1976.zbMATHGoogle Scholar
  19. [Pek1]
    A. A. Pekarskii, Inequalities of Bernstein type for derivatives of rational functions, and inverse theorems of rational approximation, Mat. Sb. (N.S.), 124, (1984), 571–588.Google Scholar
  20. [Pek2]
    A. A. Pekarski, New proof of the Semmes inequality for the derivative of the rational function, Mathematical Notes 72 (2002), 230–236.MathSciNetCrossRefGoogle Scholar
  21. [Pel1]
    V. V. Peller, Hankel operators of class Sp and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Mat. Sb. 113(155) (1980), 4, 538–581; English transl. in: Math. USSR-Sb. 41 (1982), 443–479.zbMATHGoogle Scholar
  22. [Pel2]
    V. V. Peller, Description of Hankel operators of the class Sp for p > 0, investigation of the rate of rational approximation and other applications, Mat. Sb. 122(164) (1983), 4, 481–510; English transl. in: Math. USSR-Sb. 50 (1985), 465–494.zbMATHGoogle Scholar
  23. [Sem]
    S. Semmes, Trace ideal criteria for Hankel operators, and applications to Besov spaces, Integr. Equat. Oper. Theory 7 (1984), 241–281.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Tri]
    H. Triebel, Spaces of Besov-Hardy-Sobolev Type, Teubner Verlag, Leipzig, 1978.zbMATHGoogle Scholar
  25. [Ver]
    J. E. Verbitsky, Inner functions, Besov spaces, and multipliers, Soviet Math Doklady 29 (1984), AMS Translation.Google Scholar
  26. [Vin]
    S A. Vinogradov, Multiplication and division in the space of analytic functions with area integrable derivative, and in some related spaces, Zap. Nauchn. Sem. POMI 222 (1995), 45–77; English transl. in: J. Math. Sci. (New York) 87 (1997), 3806–3827.Google Scholar
  27. [Zhu]
    K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, Inc., New York, 1990.zbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Department of Mathematics and MechanicsSaint Petersburg State UniversitySt. PetersburgRussia
  2. 2.ÉSPÉ d’Aix-MarseilleAix-Marseille UniversitéMarseille Cedex 04France

Personalised recommendations