Journal d'Analyse Mathématique

, Volume 137, Issue 1, pp 101–134 | Cite as

Overdetermined problems for the fractional Laplacian in exterior and annular sets

  • Nicola Soave
  • Enrico ValdinociEmail author


We consider a fractional elliptic equation in an unbounded set with both Dirichlet and fractional normal derivative datum prescribed. We prove that the domain and the solution are necessarily radially symmetric. We also study the extension of the result in bounded non-convex regions, as well as the radial symmetry of the solution when the set is assumed a priori to be rotationally symmetric.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Aftalion and J. Busca, Radial symmetry of overdetermined boundary-value problems in exterior domains, Arch. Ration. Mech. Anal. 143 (1998), 195–206.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G. Alessandrini, A symmetry theorem for condensers, Math. Methods Appl. Sci. 15 (1992), 315–320.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math. 62 (2009), 597–638.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal. 200 (2011), 59–88.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A.-L. Dalibard and D. Gérard-Varet, On shape optimization problems involving the fractional Laplacian, ESAIM Control Optim. Calc. Var. 19 (2013), 976–1013.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. de Nápoli and I. Drelichman, Elementary proofs of embedding theorems for potential spaces of radial functions, Preprint, Scholar
  7. [7]
    E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    S. Dipierro, G. Palatucci, and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche (Catania) 68 (2013), 201–216.MathSciNetzbMATHGoogle Scholar
  9. [9]
    M. M. Fall and S. Jarohs, Overdetermined problems with the fractional Laplacian, ESAIM: Control, Optimisation and Calculus of Variations 21 (2013), 924–938.MathSciNetzbMATHGoogle Scholar
  10. [10]
    H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Felmer and Y. Wang, Radial symmetry of positive solutions to equations involving the fractional Laplacian, Commun. Contemp. Math. 16 (2014), 1350023.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G. Grubb, Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudodifferential operators, Anal. PDE 7 (2014), 1649â-1682.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Jarohs and T. Weth, Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations, Discrete Contin. Dyn. Syst. 34 (2014), 2581–2615.MathSciNetzbMATHGoogle Scholar
  14. [14]
    P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982), 315–334.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Y. J. Park, Fractional Polya-Szegö inequality, J. ChungCheong Math. Soc. 24 (2011), 267–271.Google Scholar
  16. [16]
    G. A. Philippin, On a free boundary problem in electrostatics, Math. Methods Appl. Sci. 12 (1990), 387–392.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    G. A. Philippin and L. E. Payne, On the conformal capacity problem, in Symposia Mathematica, Vol. XXX (Cortona, 1988), Sympos. Math. XXX, Academic Press, London, 1989, pp. 119–136.zbMATHGoogle Scholar
  18. [18]
    W. Reichel, Radial symmetry by moving planes for semilinear elliptic BVPs on annuli and other non-convex domains, in Elliptic and parabolic problems (Pont-à-Mousson, 1994), Longman Sci. Tech., Harlow, 1995, pp. 164–182.Google Scholar
  19. [19]
    W. Reichel, Radial symmetry for an electrostatic, a capillarity and some fully nonlinear overdetermined problems on exterior domains, Z. Anal. Anwendungen 15 (1996), 619–635.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    W. Reichel, Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Ration. Mech. Anal. 137 (1997), 381–394.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 (2014), 275–302.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    X. Ros-Oton and J. Serra, Boundary regularity for fully nonlinear integro-differential equations, Duke Math. J. 165 (2016), 2079–2154.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal. 43 (1971), 304–318.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 831–855.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), 133–154.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), 67–112.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    B. Sirakov, Symmetry for exterior elliptic problems and two conjectures in potential theory, Ann. Inst. Henri Poincaré Anal. Non Linéaire 18 (2001), 135–156.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Francesco BrioschiPolitecnico di Milano20133Italy
  2. 2.Department of Mathematics and StatisticsUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations