Advertisement

Journal d'Analyse Mathématique

, Volume 135, Issue 2, pp 675–711 | Cite as

A modulation invariant Carleson embedding theorem outside local L2

  • Francesco di Plinio
  • Yumeng Ou
Article
  • 29 Downloads

Abstract

Yen Do and Christoph Thiele developed a theory of Carleson embeddings in outer Lp spaces for the wave packet transform
$${F_\phi }(f)(u,t,\eta ) = \int {f(x){e^{i\eta (u - x)}}\phi \left( {\frac{{u - x}}{t}} \right)} \frac{{dx}}{t},(u,t,\eta ) \in R \times (0,\infty ) \times R$$
of functions fLp(R) in the range 2 ≤ p ≤ ∞, referred to as local L2. In this article, we formulate a suitable extension of this theory to exponents 1 < p < 2, answering a question posed by Do and Thiele. The proof of our main embedding theorem involves a refined multi-frequency Calderón-Zygmund decomposition in the vein of work by Di Plinio and Thiele and by Nazarov, Oberlin, and Thiele. We apply our embedding theorem to recover the full known range of Lp estimates for the bilinear Hilbert transforms without reducing to discrete model sums or appealing to generalized restricted weak-type interpolation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Borwein and T. Erdélyi, Nikolskii-type inequalities for shift invariant function spaces, Proc. Amer. Math. Soc. 134 (2006), 3243–3246.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. R. Coifman, Y. Meyer, and E. M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304–335.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    F. Di Plinio, Weak-Lp bounds for the Carleson and Walsh-Carleson operators, C. R. Math. Acad. Sci. Paris 352 (2014), 327–331.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    F. Di Plinio and Y. Ou, Banach-valued multilinear singular integrals, Indiana Univ. Math. J., to appear. arXiv:1506.05827[math.CA].Google Scholar
  5. [5]
    F. Di Plinio and C. Thiele, Endpoint bounds for the bilinear Hilbert transform, Trans. Amer. Math. Soc. 368 (2016), 3931–3972.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Y. Do and C. Thiele, Lp theory for outer measures and two themes of Lennart Carleson united, Bull. Amer. Math. Soc. (N.S.) 52 (2015), 249–296.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    L. Grafakos and X. Li, Uniform bounds for the bilinear Hilbert transforms. I, Ann. of Math. (2) 159 (2004), 889–933.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    T. P. Hytönen M. T. Lacey, Pointwise convergence of vector-valued Fourier series, Math. Ann. 357 (2013), 1329–1361.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Lacey and C. Thiele, Lp estimates on the bilinear Hilbert transform for 2 < p < ∞, Ann. of Math. (2) 146 (1997), 693–724.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Lacey and C. Thiele, On Calderón’s conjecture, Ann. of Math. (2) 149 (1999), 475–496.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    X Li, Uniform bounds for the bilinear Hilbert transforms. II, Rev. Mat. Iberoam. 22 (2006), 1069–1126.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    C. Muscalu, J. Pipher, T. Tao, and C. Thiele, Multi-parameter paraproducts, Rev. Mat. Iberoam. 22 (2006), 963–976.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    C. Muscalu and W. Schlag, Classical and Multilinear Harmonic Analysis. Vol. II, Cambridge University Press, Cambridge, 2013.zbMATHGoogle Scholar
  14. [14]
    C. Muscalu, T. Tao, and C. Thiele, Multi-linear operators given by singular multipliers, J. Amer. Math. Soc. 15 (2002), 469–496.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    F. Nazarov, R. Oberlin, and C. Thiele, A Calderón-Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain, Math. Res. Lett. 17 (2010), 529–545.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    R. Oberlin and C. Thiele, New uniform bounds for a Walsh model of the bilinear Hilbert transform, Indiana Univ. Math. J. 60 (2011), 1693–1712.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C. Thiele, A uniform estimate, Ann. of Math. (2) 156 (2002), 519–563.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    C. Thiele, Wave Packet Analysis, American Mathematical Society, Providence RI, 2006.CrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations