Journal d'Analyse Mathématique

, Volume 135, Issue 1, pp 249–269 | Cite as

BMO and exponential Orlicz space estimates of the discrepancy function in arbitrary dimension



In the current paper, we obtain discrepancy estimates in exponential Orlicz and BMO spaces in arbitrary dimension d ≥ 3. In particular, we use dyadic harmonic analysis to prove that the dyadic product BMO and exp(L2/(d−1)) norms of the discrepancy function of so-called digital nets of order two are bounded above by (logN)(d−1)/2. The latter bound has been recently conjectured in several papers and is consistent with the best known low-discrepancy constructions. Such estimates play an important role as an intermediate step between the well-understood Lp bounds and the notorious open problem of finding the precise L asymptotics of the discrepancy function in higher dimensions, which is still elusive.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Amirkhanyan, D. Bilyk, and M. Lacey, Estimates of the discrepancy function in exponential Orlicz spaces, (2014), availiable at MATHGoogle Scholar
  2. [2]
    J. Beck and W. W. L. Chen, Irregularities of Distribution, Cambridge University Press, Cambridge, 1987.CrossRefMATHGoogle Scholar
  3. [3]
    A. Bernard, Espaces H1 de martingales à deux indices. Dualité avec des martingales de type “BMO’, Bull. Sci. Math. 103 (1979), 297–303.MathSciNetMATHGoogle Scholar
  4. [4]
    D. Bilyk, On Roth’s orthogonal function method in discrepancy theory, Unif. Distrib. Theory 6 (2011), 143–184.MathSciNetMATHGoogle Scholar
  5. [5]
    D. Bilyk, M. T. Lacey, I. Parissis, and A. Vagharshakyan, Exponential squared integrability of the discrepancy function in two dimensions, Mathematika 55 (2009), 2470–2502.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    D. Bilyk, M. T. Lacey, and A. Vagharshakyan, On the small ball inequality in all dimensions, J. Funct. Anal. 254 (2008), 2470–2502.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    S.-Y. A. Chang and R. Fefferman, A continuous version of duality of H1 with BMO on the bidisc, Ann. of Math. 112 (1980), 179–201.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrdinger operators, Comment. Math. Helv. 60 (1985), 217–246.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    W. W. L. Chen, On irregularities of distribution, Mathematika 27 (1981), 153–170.CrossRefMATHGoogle Scholar
  10. [10]
    W.W. L. Chen and M. M. Skriganov, Explicit constructions in the classical mean squares problem in irregularities of point distribution, J. Reine Angew. Math. 545 (2002), 67–95.MathSciNetMATHGoogle Scholar
  11. [11]
    W.W. L. Chen and M. M. Skriganov, Orthogonality and digit shifts in the classical mean squares problem in irregularities of point distribution, in Diophantine Approximation, Springer, Vienna, 2008, pp. 141–159.CrossRefGoogle Scholar
  12. [12]
    H. Davenport, Note on irregularities of distribution, Mathematika 3 (1956), 131–135.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    J. Dick, Explicit constructions of quasi-Monte Carlo rules for the numerical integration of highdimensional periodic functions, SIAM J. Numer. Anal. 45 (2007), 2141–2176.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    J. Dick, Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order, SIAM J. Numer. Anal. 46 (2008), 1519–1553.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    J. Dick, Discrepancy bounds for infinite-dimensional order two digital sequences over F2, J. Number Theory 136 (2014), 204–232.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J. Dick and F. Pillichshammer, Digital Nets and Sequences. Discrepancy Theory and Quasi-Monte Carlo Integration, Cambridge University Press, Cambridge, 2010.CrossRefMATHGoogle Scholar
  17. [17]
    J. Dick and F. Pillichshammer, OptimalL2 discrepancy bounds for higher order digital sequences over the finite field F2, Acta Arith. 162 (2014), 65–99.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    J. Dick and F. Pillichshammer, Explicit constructions of point sets and sequences with low discrepancy, in Uniform Distribution and Quasi-Monte Carlo Methods: Discrepancy, Integration and Applications, Walter DeGruyter GmbH, Berlin/Boston, 2014, pp. 63–86.Google Scholar
  19. [19]
    H. Faure, F. Pillichshammer, G. Pirsic, and W. Ch. Schmid, L2 discrepancy of generalized twodimensional Hammersley point sets scrambled with arbitrary permutations, Acta Arith. 141 (2010), 395–418.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    G. Halász, On Roth’s method in the theory of irregularities of point distributions, in Recent Progress in Analytic Number Theory, Vol. 2, Academic Press, London-New York, 1981, pp. 79–94.Google Scholar
  21. [21]
    J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals, Numer. Math. 2 (1960), 84–90.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    A. Hinrichs, Discrepancy of Hammersley points in Besov spaces of dominating mixed smoothness, Math. Nachr. 283 (2010), 478–488.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    A. Hinrichs, Discrepancy, integration and tractability, in Monte Carlo and Quasi-Monte Carlo Methods 2012, Springer, Berlin-Heidelberg, 2013, pp. 129–172.CrossRefGoogle Scholar
  24. [24]
    A. Hinrichs and L. Markhasin, On lower bounds for the L2-discrepancy, J. Complexity 27 (2011), 127–132.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, John Wiley & Sons, Ltd., New York, 1974.MATHGoogle Scholar
  26. [26]
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I., Springer, Berlin, 1977.CrossRefMATHGoogle Scholar
  27. [27]
    L. Markhasin, Discrepancy of generalized Hammersley type point sets in Besov spaces with dominating mixed smoothness, Unif. Distrib. Theory 8 (2013), 135–164.MathSciNetMATHGoogle Scholar
  28. [28]
    L. Markhasin, Quasi-Monte Carlo methods for integration of functions with dominating mixed smoothness in arbitrary dimension, J. Complexity 29 (2013), 370–388.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    L. Markhasin, Discrepancy and integration in function spaces with dominating mixed smoothness, Dissertationes Math. 494 (2013), 1–81.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    L. Markhasin, L2- and Srp, qB-discrepancy of (order 2) digital nets, Acta Arith. 168 (2015), 139–160.MathSciNetMATHGoogle Scholar
  31. [31]
    J. Matoušek, Geometric discrepancy. An Illustrated Guide, Springer-Verlag, Berlin, 1999.CrossRefMATHGoogle Scholar
  32. [32]
    H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987), 273–337.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    E. Novak and H. Woźniakowski, Tractability of Multivariate Problems. Volume II: Standard Information for Functionals European Mathematical Society Publishing House, Zürich, 2010.CrossRefMATHGoogle Scholar
  34. [34]
    J. Pipher and L. Ward, BMO from dyadic BMO on the bydisc, J. London Math. Soc. 77 (2008), 524–544.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    K. F. Roth, On irregularities of distribution, Mathematika 1 (1954), 73–79.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    K. F. Roth, On irregularities of distribution. IV, Acta Arith. 37 (1980), 67–75.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    W. M. Schmidt, Irregularities of distribution. VII, Acta Arith. 21 (1972), 45–50.MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    W. M. Schmidt, Irregularities of distribution X, in Number Theory and Algebra, Academic Press, New York, 1977, pp. 311–329.Google Scholar
  39. [39]
    M. M. Skriganov, Harmonic analysis on totally disconnected groups and irregularities of point distributions, J. Reine Angew. Math. 600 (2006), 25–49.MathSciNetMATHGoogle Scholar
  40. [40]
    M. M. Skriganov, On mean values of the Lq-discrepancies of point distributions, St. Petersburg Math. J. 24 (2013), 991–1012.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    M. M. Skriganov, Dyadic shift randomizations in classical discrepancy theory, Mathematikca 62 (2016), 183–209.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    I. M. Sobol, The distribution of points in a cube and the approximate evaluation of integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784–802.MathSciNetGoogle Scholar
  43. [43]
    H. Triebel, Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration, European Mathematical Society Publishing House, Zürich, 2010.CrossRefMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Institut für Stochastik und AnwendungenUniversität StuttgartStuttgartGermany

Personalised recommendations