Advertisement

Journal d'Analyse Mathématique

, Volume 131, Issue 1, pp 337–365 | Cite as

The algebra of Calderón-Zygmund kernels on a homogeneous group is inverse-closed

  • Paweł Głowacki
Article
  • 58 Downloads

Abstract

We show that the subalgebra of convolution operators with Calderón-Zygmund kernels on a homogeneous group G is inverse-closed in the algebra of all bounded linear operators on the Hilbert space L 2(G). The main tool used is a symbolic calculus, where the convolution of distributions on the group is translated via the abelian Fourier transform into a “twisted product” of symbols on the dual to the Lie algebra g of G.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. P. Calderón and A. Zygmund, Algebras of certain singular operators, Amer. J. Math. 78 (1956), 310–320.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Christ, Inversion in some algebras of singular integral operators, Rev.Mat. Iberoam. 4 (1988), 219–225.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Christ, On the regularity of inverses of singular integral operators, Duke Math. J. 57 (1988), 459–484.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M. Christ, Regularity properties of \({\bar \vartheta _b}\) equation on weakly pseudoconvex CR manifolds of dimension 3, J. Amer.Math. Soc. 1 (1988), 587–646.MathSciNetzbMATHGoogle Scholar
  6. [6]
    M. Christ and D. Geller, Singular integral characterizations of Hardy spaces on homogeneous groups, Duke Math. J. 51 (1984), 547-598.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S. Coré and D. Geller, Convolution on homogeneous groups, J. Math. Anal. Appl. 370 (2010), 472–485.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    L. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and their Applications. Part 1: Basic Theory and Examples, Cambridge University Press, Cambridge, 1990.zbMATHGoogle Scholar
  9. [9]
    M. Duflo, Représentations de semi-groupes de mesures sur un groupe localement compact, Ann. Inst. Fourier (Grenoble) 28 (1978), 225–249.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Dziubański and P. Głowacki, Sobolev spaces related to Schrödinger operators with polynomial potentials, Math. Z. 262 (2009), 881–894.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, NJ, 1982.zbMATHGoogle Scholar
  12. [12]
    P. Głowacki, Stable semigroups of measures as commutative approximate identities on nongraded homogeneous groups, Invent. Math. 83 (1986), 557–582.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P. Głowacki, An inversion problem for singular integral operators on homogeneous groups, Studia Math. 87 (1987), 53–69.MathSciNetzbMATHGoogle Scholar
  14. [14]
    P. Głowacki, The Melin calculus for general homogeneous groups, Arkiv Mat. 45 (2007), 31–48.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P. Głowacki, Invertibility of convolution operators on homogeneous groups, Rev. Mat. Iberoam. 28 (2012), 141–156.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    L. Hörmander, The Analysis of Linear Partial Differential Operators I, Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1990.zbMATHGoogle Scholar
  17. [17]
    L. Hörmander, The Analysis of Linear Partial Differential Operators III, Pseudodifferential Operators, Springer-Verlag, Berlin, 1985.zbMATHGoogle Scholar
  18. [18]
    G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), 264–293.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Janssen, Charakterisierung stetiger Faltungshalbgruppen durch das Lévy-Mass, Math. Ann. 246 (1980), 233–240.CrossRefzbMATHGoogle Scholar
  20. [20]
    D. Manchon, Formule de Weyl pour les groupes de Lie nilpotents, J. Reine Angew. Math. 418 (1991), 77–129.MathSciNetzbMATHGoogle Scholar
  21. [21]
    A. Melin, Parametrix constructions for right-invariant differential operators on nilpotent Lie groups, Ann. Global Anal. Geom. 1 (1983), 79–130.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    F. Ricci, Calderón-Zygmund kernels on nilpotent Lie groups, in Harmonic Analysis,Springer-Verlag, Berlin-New York, 1982, pp. 217–227.CrossRefGoogle Scholar
  23. [23]
    E. M. Stein, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.zbMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2017

Authors and Affiliations

  1. 1.University of WrocławWrocławPoland

Personalised recommendations