Journal d'Analyse Mathématique

, Volume 129, Issue 1, pp 165–196 | Cite as

Characteristic factors for commuting actions of amenable groups



We describe characteristic factors for certain averages arising from commuting actions of locally compact second-countable amenable groups. Under some ergodicity assumptions, we use these factors to prove a form of multiple recurrence for three such actions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Austin, On the norm convergence of non-conventional ergodic averages, Ergodic Theory Dynam. Systems, 30 (2010), 321–338.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    T. Austin, Non-conventional ergodic averages for several commuting actions of an amenable group, J. Anal. Math., to appear; arXiv:1309.4315Google Scholar
  3. [3]
    V. Bergelson, Ergodic Ramsey Theory—an update, Ergodic Theorey of Zd Actions, Cambridge Univ. Press, Cambridge, 1996, pp. 1–61.MATHGoogle Scholar
  4. [4]
    V. Bergelson and H. Furstenberg, WM groups and Ramsey theory, Topology Appl. 156 (2009), 2572–2580.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    V. Bergelson and N. Hindman, Some topological semicommutative van der Waerden type theorems and their combinatorial consequences, J. LondonMath. Soc. (2), 45 (1992), 385–403.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    V. Bergelson, N. Hindman, and I. Leader, Additive and multiplicative Ramsey theory in the reals and the rationals, J. Combin. Theory Ser. A, 85 (1999) 41–68.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    V. Bergelson, B. Host, and B. Kra, Multiple recurrence and nilsequences, Invent. Math., 160 (2005), 261–303.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    V. Bergelson, A. Leibman, and E. Lesigne, Intersective polynomials and the polynomial Szemerédi theorem, Adv. Math., 219 (2008), 369–388.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    V. Bergelson and R. McCutcheon, Recurrence for semigroup actions and a non-commutative Schur theorem, Contemporary Mathematics, 215 (1998), 205–222.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    V. Bergelson and R. McCutcheon, Central sets and a non-commutative Roth theorem, Amer. J. Math. 129 (2007), 1251–1275.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    V. Bergelson, R. McCutcheon, and Q. Zhang, A Roth theorem for amenable groups, Amer. J. of Math. 119 (1997), 1173–1211.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    V. Bergelson and J. Rosenblatt, Joint ergodicity for group actions, Ergodic Theory Dynam. Systems, 8 (1988), 351–364.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    J. Dixmier, Von Neumann Algebras, North-Holland Publishing Co., Amsterdam-New York, 1981MATHGoogle Scholar
  14. [14]
    N. Frantzikinakis and B. Kra, Convergence of multiple ergodic averages for some commuting transformations, Ergodic Theory and Dynam. Systems, 25 (2005), 799–809.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. AnalyseMath., 31 (1977), 204–256.MathSciNetMATHGoogle Scholar
  16. [16]
    H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981.CrossRefMATHGoogle Scholar
  17. [17]
    H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, J. Analyse Math., 34 (1978), 275–291.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    H. Furstenberg and Y. Katznelson, A density version of the Hales-Jewett theorem, J. Analyse Math. 57 (1991), 64–119.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    H. Furstenberg, Y. Katznelson, and D. Ornstein, The ergodic theoretical proof of Szemerédi’s theorem, Bull Amer. Math. Soc. (N. S.), 7 (1982), 527–552.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    E. Glasner, Ergodic Theory via Joinings, American Mathematical Society, Providence, RI, 2003CrossRefMATHGoogle Scholar
  21. [21]
    E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Springer-Verlag, Berlin-New York, 1979.MATHGoogle Scholar
  22. [22]
    B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2), 161 (2005), 397–488.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    R. McCutcheon, Elemental Methods in Ergodic Ramsey Theory, Springer LNM 1722, Berlin, 1999.CrossRefMATHGoogle Scholar
  24. [24]
    A. L. T. Paterson, Amenability, American Mathematical Society, Providence, RI, 1988.Google Scholar
  25. [25]
    A. Ramsay, Measurable group actions are essentially Borel actions, Israel J. Math., 51 (1985), 339–346.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    D. P. Williams, Crossed Products of C*-Algebras, American Mathematical Society, Providence, RI, 2007.CrossRefMATHGoogle Scholar
  27. [27]
    K. Yosida, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, 1980.Google Scholar
  28. [28]
    Q. Zhang, An example of compact extensions of Kronecker factors and skew products of irrational rotations with finite groups, Israel J. Math., 92 (1995), 249–261.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc., 20 (2007), 53–97.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    R. J. Zimmer, Extensions of ergodic group actions, Illinois J. Math., 20 (1976), 373–409.MathSciNetMATHGoogle Scholar
  31. [31]
    P. Zorin-Kranich, Norm convergence of nilpotent ergodic averages along Følner sets, arXiv: 1111.7292v8[math.DS].Google Scholar

Copyright information

© Hebrew University Magnes Press 2016

Authors and Affiliations

  1. 1.Department of MathematicsThe Ohio State UniversityColumbusUSA

Personalised recommendations