Advertisement

Journal d'Analyse Mathématique

, Volume 128, Issue 1, pp 261–287 | Cite as

Hardy spaces for Fourier-Bessel expansions

  • Jacek Dziubański
  • Marcin Preisner
  • Luz Roncal
  • Pablo Raúl Stinga
Article
  • 121 Downloads

Abstract

We study Hardy spaces for Fourier-Bessel expansions associated with Bessel operators on \(((0,1),{x^{2\nu + 1}}dx)\) and ((0, 1), dx). We define Hardy spaces H 1 as the sets of L 1-functions whose maximal functions for the corresponding Poisson semigroups belong to L 1. Atomic characterizations are obtained.

Keywords

Hardy Space Maximal Function Homogeneous Type Atomic Decomposition Poisson Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Benedek and R. Panzone, On mean convergence of Fourier-Bessel series of negative order, Studies in Appl. Math. 50 (1971), 281–292.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Benedek and R. Panzone, On convergence of orthogonal series of Bessel functions, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 505–525.MathSciNetzbMATHGoogle Scholar
  3. [3]
    J. J. Betancor, J. Dziubański, and J. L. Torrea, On Hardy spaces associated with Bessel operators, J. Anal. Math. 107 (2009), 195–219.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Ó. Ciaurri and L. Roncal, The Bochner-Riesz means for Fourier-Bessel expansions, J. Funct. Anal. 228 (2005), 89–113.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Ó. Ciaurri and L. Roncal, Littlewood-Paley-Stein gk-functions for Fourier-Bessel expansions, J. Funct. Anal. 258 (2010), 2173–2204.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Ó. Ciaurri and L. Roncal, Higher order Riesz transforms for Fourier-Bessel expansions, J. Fourier Anal. Appl. 18 (2012), 770–789.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Ó. Ciaurri and K. Stempak, Conjugacy for Fourier-Bessel expansions, Studia Math. 176 (2006), 215–247.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Ó. Ciaurri and K. Stempak, Transplantation and multiplier theorems for Fourier-Bessel expansions, Trans. Amer.Math. Soc. 358 (2006), 4441–4465.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Ó. Ciaurri and K. Stempak, Weighted transplantation for Fourier-Bessel expansions, J. Anal. Math. 100 (2006), 133–156.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R. Coifman, A real variable characterization of Hp, Studia Math. 51 (1974), 269–274.MathSciNetzbMATHGoogle Scholar
  11. [11]
    R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Springer, Berlin, 1971.zbMATHGoogle Scholar
  12. [12]
    J. Dziubański, M. Preisner, and B. Wróbel, Multivariate Hörmander-type multiplier theorem for the Hankel transform, J. Fourier Anal. Appl. 19 (2013), 417–437.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Dziubański and J. Zienkiewicz, Hardy space H1 associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 (1999), 279–296.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137–193.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    G. B. Folland, Introduction to Partial Differential Equations, 2nd ed., Princeton University Press, Princeton, NJ, 1995.zbMATHGoogle Scholar
  16. [16]
    J. E. Gilbert, Maximal theorems for some orthogonal series I, Trans. Amer. Math. Soc. 145 (1969), 495–515.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27–42.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Latter, A decomposition of Hp(Rn) in terms of atoms, Studia Math. 62 (1978), 93–101.MathSciNetzbMATHGoogle Scholar
  19. [19]
    N. N. Lebedev, Special Functions and Their Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965.zbMATHGoogle Scholar
  20. [20]
    R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math. 33 (1979), 271–309.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Nowak and L. Roncal, On sharp heat and subordinated kernel estimates in the Fourier-Bessel setting, Rocky Mountain J. Math. 44 (2014), 1321–1342.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Nowak and L. Roncal, Sharp heat kernel estimates in the Fourier-Bessel setting for a continuous range of the type parameter, Acta Math. Sinica, 30 (2014), 437–444.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Nowak and L. Roncal, Potential operators associated with Jacobi and Fourier-Bessel expansions, J. Math. Anal. Appl. 422 (2015), 148–184.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M. Preisner, Riesz transform characterization of H 1 spaces associated with certain Laguerre expansions, J. Approx. Theory 164 (2012), 229–252.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.zbMATHGoogle Scholar
  26. [26]
    E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables, I: the theory of Hp spaces, Acta Math. 103 (1960), 25–62.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Uchiyama, A maximal function characterization of Hp on the space of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), 579–592.MathSciNetzbMATHGoogle Scholar
  28. [28]
    G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995.zbMATHGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2016

Authors and Affiliations

  • Jacek Dziubański
    • 1
  • Marcin Preisner
    • 1
  • Luz Roncal
    • 2
  • Pablo Raúl Stinga
    • 3
  1. 1.InstytutmatematycznyUniwersytetwrocławskiWrocław, Pl. Grunwaldzki 2/4Poland
  2. 2.Departamento de Matemáticas Y ComputaciónUniversidad de la RiojaLogroñoSpain
  3. 3.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations