Advertisement

Journal d'Analyse Mathématique

, Volume 116, Issue 1, pp 53–82 | Cite as

On certain other sets of integers

  • Tom SandersEmail author
Article

Abstract

We show that if A ⊂ {1,...,N} contains no non-trivial three-term arithmetic progressions then |A| = O(N/log3/4−o(1) N).

Keywords

Abelian Group Triangle Inequality Relative Entropy Arithmetic Progression Width Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Beh46]
    F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. 32 (1946), 331–332.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [Bou08]
    J. Bourgain, Roth’s theorem on progressions revisited, J. Anal. Math. 104 (2008), 155–206.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [Bou99]
    J. Bourgain, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), 968–984.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [Bou90]
    J. Bourgain, On arithmetic progressions in sums of sets of integers, in A Tribute to Paul Erdős, Cambridge University Press, Cambridge, 1990, pp. 105–109.Google Scholar
  5. [Bou85]
    J. Bourgain, Sidon sets and Riesz products, Ann. Inst. Fourier (Grenoble) 35 (1985), 137–148.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [Cha02]
    M. C. Chang, A polynomial bound in Freĭman’s theorem, Duke Math. J. 113 (2002), 399–419.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [Elk08]
    M. Elkin, An improved construction of progression-free sets, Israel J. Math. 189 (2001), 93–128.MathSciNetGoogle Scholar
  8. [GW10a]
    W. T. Gowers and J. Wolf, Linear forms and quadratic uniformity for functions onN, J. Anal. Math. 115 (2011), 121–186.CrossRefGoogle Scholar
  9. [Gre03]
    B. J. Green, Some constructions in the inverse spectral theory of cyclic groups, Combin. Probab. Comput. 12 (2003), 127–138.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [GK09]
    B. J. Green and S. V. Konyagin, On the Littlewood problem modulo a prime, Canad. J. Math. 61 (2009), 141–164.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [GR07]
    B. J. Green and I. Z. Ruzsa, Freĭman’s theorem in an arbitrary abelian group, J. Lond. Math. Soc. (2) 75 (2007), 163–175.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [GT08]
    B. J. Green and T. C. Tao, An inverse theorem for the Gowers U 3(G) norm, Proc. Edinb. Math. Soc. (2) 51 (2008), 73–153.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [GW10b]
    B. J. Green and J. Wolf, A note on Elkin’s improvement of Behrend’s construction, in Additive Number Theory, Springer-Verlag, 2010, pp. 141–144.Google Scholar
  14. [HB87]
    D. R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc. (2) 35 (1987), 385–394.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [Lev04]
    V. F. Lev, Progression-free sets in finite abelian groups, J. Number Theory 104 (2004), 162–169.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [Mes95]
    R. Meshulam, On subsets of finite abelian groups with no 3-term arithmetic progressions, J. Combin. Theory Ser. A 71 (1995), 168–172.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [Rot53]
    K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [Rot52]
    K. F. Roth, Sur quelques ensembles d’entiers, C. R. Acad. Sci. Paris 234 (1952), 388–390.MathSciNetzbMATHGoogle Scholar
  19. [SS42]
    R. Salem and D. C. Spencer, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. 28 (1942), 561–563.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [Shk09]
    I. D. Shkredov, On sumsets of dissociated sets, Online J. Anal. Comb., Art. 4 (2009).Google Scholar
  21. [Shk08a]
    I. D. Shkredov, On sets of large trigonometric sums, Izv. Ross. Akad. Nauk Ser. Mat. 72 no. 1 (2008), 161–182.MathSciNetGoogle Scholar
  22. [Shk08b]
    I. D. Shkredov, On sets with small doubling, Mat. Zametki 84 (2008), 927–947.MathSciNetGoogle Scholar
  23. [Shk07]
    I. D. Shkredov, Some examples of sets of large trigonometric sums, Mat. Sb. 198 no. 12 (2007), 105–140.MathSciNetGoogle Scholar
  24. [Shk06]
    I. D. Shkredov, On sets of large trigonometric sums, Dokl. Akad. Nauk 411 (2006), 455–459.MathSciNetGoogle Scholar
  25. [SY10]
    I. D. Shkredov and S. Yekhanin, Sets with large additive energy and symmetric sets, J. Comb. Theory Ser. A 118 (2011), 1086–1093.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [Sze90]
    E. Szemerédi, Integer sets containing no arithmetic progressions, Acta Math. Hungar. 56 (1990), 155–158.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [TV06]
    T. C. Tao and V. Vu, Additive Combinatorics, Cambridge University Press, Cambridge, 2006.zbMATHCrossRefGoogle Scholar

Copyright information

© Hebrew University Magnes Press 2012

Authors and Affiliations

  1. 1.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeEngland

Personalised recommendations