Journal d'Analyse Mathématique

, Volume 107, Issue 1, pp 107–140 | Cite as

Non-real zeros of linear differential polynomials

Article

Abstract

Let f be a real entire function with finitely many non-real zeros, not of the form f = Ph with P a polynomial and h in the Laguerre-Pólya class. Lower bounds are given for the number of non-real zeros of f″ + ω f, where ω is a positive real constant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ålander, Sur les zéros extraordinaires des dérivées des fonctions entières réelles, Ark. för Mat., Astron. och Fys. 11 (1916), no. 15, 1–18.Google Scholar
  2. [2]
    M. Ålander, Sur les zéros complexes des dérivées des fonctions entières réelles, Ark. för Mat., Astron. och Fys. 16 (1922), no. 10, 1–19.Google Scholar
  3. [3]
    K. F. Barth, D. A. Brannan and W. K. Hayman, The growth of plane harmonic functions along an asymptotic path, Proc. London Math. Soc. (3) 37 (1978), 363–384.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355–373.MATHMathSciNetGoogle Scholar
  5. [5]
    W. Bergweiler and A. Eremenko, Proof of a conjecture of Pólya on the zeros of successive derivatives of real entire functions, Acta Math. 197 (2006), 145–166.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    W. Bergweiler, A. Eremenko and J. K. Langley, Real entire functions of infinite order and a conjecture of Wiman, Geom. Funct. Anal. 13 (2003), 975–991.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    W. Bergweiler, A. Eremenko and J. K. Langley, Zeros of differential polynomials in real meromorphic functions, Proc. Edinburgh Math. Soc. 48 (2005), 279–293.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    S. Edwards and S. Hellerstein, Non-real zeros of derivatives of real entire functions and the Pó lya-Wiman conjectures, Complex Var. Theory Appl. 47 (2002), 25–57.MATHMathSciNetGoogle Scholar
  9. [9]
    G. Frank, Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, Math. Z. 149 (1976), 29–36.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    G. Frank and S. Hellerstein, On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients, Proc. London Math. Soc. (3) 53 (1986), 407–428.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    G. Frank, W. Hennekemper and G. Polloczek, Über die Nullstellen meromorpher Funktionen und deren Ableitungen, Math. Ann. 225 (1977), 145–154.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. A. Goldberg and I. V. Ostrovskii, Distribution of Values of Meromorphic Functions, Nauka, Moscow, 1970 (Russian).Google Scholar
  13. [13]
    G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), 88–104.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.MATHGoogle Scholar
  15. [15]
    W. K. Hayman, On the characteristic of functions meromorphic in the plane and of their integrals, Proc. London Math. Soc. (3) 14A (1965), 93–128.CrossRefMathSciNetGoogle Scholar
  16. [16]
    W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), 317–358.MATHMathSciNetGoogle Scholar
  17. [17]
    S. Hellerstein and J. Williamson, Derivatives of entire functions and a question of Pólya, Trans. Amer. Math. Soc. 227 (1977), 227–249.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    S. Hellerstein and J. Williamson, Derivatives of entire functions and a question of Pólya, II, Trans. Amer. Math. Soc. 234 (1977), 497–503.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Hellerstein and C. C. Yang, Half-plane Tumura-Clunie theorems and the real zeros of successive derivatives, J. London Math. Soc. (2) 4 (1971/2), 469–481.CrossRefMathSciNetGoogle Scholar
  20. [20]
    E. Laguerre, Sur les fonctions du genre zéro et du genre un, C. R. Acad. Sci. Paris 98 (1882), Oeuvres 1 174–177.Google Scholar
  21. [21]
    I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin/New York, 1993.Google Scholar
  22. [22]
    J. K. Langley, Non-real zeros of higher derivatives of real entire functions of infinite order, J. Analyse Math. 97 (2005), 357–396.CrossRefMathSciNetGoogle Scholar
  23. [23]
    J. K. Langley, Solution of a problem of Edwards and Hellerstein, Comput.Methods Funct. Theory 6 (2006), 243–252.MATHMathSciNetGoogle Scholar
  24. [24]
    B. Ja. Levin, Distribution of Zeros of Entire Functions, GITTL, Moscow, 1956. English transl., Amer. Math. Soc., Providence, RI, 1980.Google Scholar
  25. [25]
    B. Ja. Levin and I. V. Ostrovskii, The dependence of the growth of an entire function on the distribution of zeros of its derivatives. Sibirsk. Mat. Zh. 1 (1960), 427–455. English transl., Amer. Math. Soc. Transl. (2) 32 (1963), 323–357.MATHMathSciNetGoogle Scholar
  26. [26]
    R. Nevanlinna, Eindeutige analytische Funktionen, 2. Aufl., Springer, Berlin, 1953.MATHGoogle Scholar
  27. [27]
    G. Pólya, On the zeros of the derivatives of a function and its analytic character, Bull. Amer. Math. Soc. 49 (1943), 178–191.CrossRefMathSciNetGoogle Scholar
  28. [28]
    T. Sheil-Small, On the zeros of the derivatives of real entire functions and Wiman’s conjecture, Ann. of Math. (2) 129 (1989), 179–193.CrossRefMathSciNetGoogle Scholar
  29. [29]
    N. Steinmetz, Rational Iteration, Walter de Gruyter, Berlin/New York, 1993.MATHGoogle Scholar
  30. [30]
    E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press, 1939.Google Scholar
  31. [31]
    M. Tsuji, On Borel’s directions of meromorphic functions of finite order, I, Tôhoku Math. J. 2 (1950), 97–112.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., Tokyo, 1950.Google Scholar

Copyright information

© Hebrew University Magnes Press 2009

Authors and Affiliations

  1. 1.School Of Mathematical SciencesUniversity Of NottinghamNottinghamU.K.

Personalised recommendations