Journal d'Analyse Mathématique

, Volume 102, Issue 1, pp 225–310

Spectral properties of polyharmonic operators with limit-periodic potential in dimension two

  • Yulia Karpeshina
  • Young-Ran Lee
Article

Abstract

We consider a polyharmonic operator H = (−Δ)l + V (x) in dimension two with l ≥ 6, l being an integer, and a limit-periodic potential V (x). We prove that the spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves \(e^i \left\langle {\vec k,\vec x} \right\rangle \) at the high energy region. Second, the isoenergetic curves in the space of momenta \(\vec k\) corresponding to these eigenfunctions have the form of slightly distorted circles with holes (Cantor type structure).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Avron and B. Simon, Almost periodic Schrödinger operators I: Limit periodic potentials, Comm. Math. Phys. 82 (1981), 101–120.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    J. Avron and B. Simon, Cantor sets and Schrödinger operators: Transient and recurrent spectrum, J. Funct. Anal. 43 (1981), 1–31.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    J. Avron and B. Simon, Almost periodic Schrödinger operators. II: The integrated density of states, Duke Math. J. 50 (1983), 369–391.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. Bourgain, Quasiperiodic Solutions of Hamilton Perturbations of 2D Linear Schrödinger Equation, Ann. of Math. (2) 148 (1998), 363–439.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Yu. P. Chuburin, On the multidimensional discrete Schrödinger equation with a limit periodic potential, Theoret. and Math. Phys. 102 (1995), 53–59.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    V. A. Chulaevski, On perturbation of a Schrödinger Operator with Periodic Potential, Russian Math. Surv. 36(5) (1981), 143–144.CrossRefGoogle Scholar
  7. [7]
    J. B. Conway, Functions of One Complex Variable I, Springer-Verlag, 1978.Google Scholar
  8. [8]
    G. Gallavotti, Perturbation theory for classical Hamiltonian systems, in Scaling and Self-Similarity in Physics, (Bures-sur-Yvette, 1981/1982), Birkhäuser Boston, Boston, 1983, pp. 359–424.Google Scholar
  9. [9]
    Yu. Karpeshina, Perturbation Theory for the Schrödinger Operator with a Periodic Potential, Lecture Notes in Mathematics, 1663, Springer-Verlag, 1997.Google Scholar
  10. [10]
    Yu. Karpeshina and Y.-R. Lee, On polyharmonic operators with limit-periodic potential in dimension two, Electron. Res. Announc. Amer. Math. Soc. 12 (2006), 113–120.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Y.-R. Lee, Spectral Properties of a Polyharmonic Operator with Limit Periodic Potential in Dimension Two, PhD thesis, Dept. of Mathematics, UAB.Google Scholar
  12. [12]
    S. A. Molchanov and V. A. Chulaevskii, Structure of the spectrum of lacunary limit-periodic Schrö dinger operator, Funct. Anal. Appl. 18 (1984), 91–92.MathSciNetGoogle Scholar
  13. [13]
    J. Moser, An example of the Schrödinger operator with almost-periodic potentials and nowhere dense spectrum, Comment. Math. Helv. 56 (1981), 198–224.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    L. A. Pastur and V. A. Tkachenko, On the spectral theory of the one-dimensional Schrödinger operator with limit-periodic potential, Dokl. Akad. Nauk SSSR 279 (1984), 1050–1053; Engl. Transl.: Soviet Math. Dokl. 30 (1984), 773–776.MathSciNetGoogle Scholar
  15. [15]
    L. A. Pastur and V. A. Tkachenko, Spectral theory of a class of one-dimensional operators with limit-periodic potentials, Trans. Moscow Math. Soc. 51 (1989), 115–166.MathSciNetGoogle Scholar
  16. [16]
    L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators, Springer-Verlag, 1992.Google Scholar
  17. [17]
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol IV, 3rd ed., Academic Press, 1987.Google Scholar
  18. [18]
    G. V. Rozenblum, M. A. Shubin and M. Z. Solomyak, Partial Differential Equations VII: Spectral Theory of Differential Operators, Springer-Verlag, 1994.Google Scholar
  19. [19]
    M. A. Shubin, The density of states for selfadjoint elliptic operators with almost periodic coefficients. Trudy Sem. Petrovskii (Moscow University) 3 (1978), 243–275.MATHGoogle Scholar
  20. [20]
    M. A. Shubin, Spectral theory and index of elliptic operators with almost-periodic coefficients, Russ. Math. Surveys 34(2) (1979), 109–157.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    B. Simon, Almost periodic Schrödinger operators. A review, Advances in Applied Mathematics, 3 (1982), 463–490.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    M. M. Skriganov and A. V. Sobolev, On the Spectrum of a limit-periodiec Schrödinger operator, St. Petersburg Math. J. 17 (2006), 815–833.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    L. E. Thomas and S. R. Wassel, Semiclassical approximation for Schrödinger operators at high energy, Schrödinger Operators (Aarhus, 1991), Lecture Notes in Phys. 403, ed. E. Balslev, Springer-Verlag, 1992, pp. 194–210.Google Scholar
  24. [24]
    L. E. Thomas and S. R. Wassel, Stability of Hamiltonian systems at high evergy, J. Math. Phys. 33(10) (1992), 3367–3373.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    L. Zelenko, On a generic topological structure of the spectrum to one-dimensional Schrödinger operators with complex limit-periodic potentials, Integral Equations Operator Theory 50 (2004), 393–430.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Yulia Karpeshina
    • 1
  • Young-Ran Lee
    • 2
  1. 1.Department of MathematicsUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of Mathematical SciencesKaist (Korea Advanced Institute of Science and Technology)Yusong-Gu DaejeonRepublic of Korea

Personalised recommendations