Advertisement

Long cycles in abc-permutations

  • Igor Pak
  • Amanda Redlich
Article

Abstract

An abc-permutation is a permutation σ abc S n obtained by exchanging an initial block of length a and a final block of length c of {1,…,n}, where n=a+b+c. In this note we compute the limit of the probability that a random abc-permutation is a long cycle. This resolves Arnold’s open problem (Arnold in Arnold’s problems, 2004, p. 144).

Keywords

Interval exchange transformations Random permutations 

Mathematics Subject Classification (2000)

05D40 11K99 37A05 60C05 

References

  1. 1.
    Ambrož P, Masáková A, Pelantová E (2007) Matrices of 3iet preserving morphisms. arXiv:math.CO/0702336
  2. 2.
    Arnold VI (2004) Arnold’s problems. Springer, Berlin; PHASIS, Moscow Google Scholar
  3. 3.
    Ferenczi S, Holton C, Zamboni LQ (2001) Structure of three interval exchange transformations. I. An arithmetic study. Ann Inst Fourier (Grenoble) 51(4):861–901 zbMATHMathSciNetGoogle Scholar
  4. 4.
    Ferenczi S, Holton C, Zamboni LQ (2003) Structure of three-interval exchange transformations. II. A combinatorial description of the trajectories. J Anal Math 89:239–276 zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Katok AB, Stepin AM (1967) Approximations in ergodic theory (Russian). Usp Mat Nauk 22(5):81–106 zbMATHMathSciNetGoogle Scholar
  6. 6.
    Keane M (1975) Interval exchange transformations. Math Z 141:25–31 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kontsevich M (1997) Lyapunov exponents and Hodge theory. In: The mathematical beauty of physics (Saclay, 1996). World Sci, River Edge, NJ, pp 318–332 Google Scholar
  8. 8.
    Lothaire M (1997) Combinatorics on words. Cambridge University Press, Cambridge zbMATHGoogle Scholar
  9. 9.
    Oseledets VI (1966) The spectrum of ergodic automorphisms. Sov Math Dokl 7:776–779 zbMATHGoogle Scholar
  10. 10.
    Rauzy G (1979) Échanges d’intervalles et transformations induites. Acta Arith 34(4):315–328 zbMATHMathSciNetGoogle Scholar
  11. 11.
    Zorich A (1999) How do the leaves of a closed 1-form wind around a surface? In: Pseudoperiodic topology. Amer Math Soc Transl Ser 2, vol 197. Amer Math Soc, Providence, RI, pp 135–178 Google Scholar

Copyright information

© PHASIS GmbH and Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations