Advertisement

Journal of Coastal Conservation

, Volume 23, Issue 5, pp 943–958 | Cite as

Cod and climate: a systems approach for sustainable fisheries management of Atlantic cod (Gadus morhua) in coastal Danish waters

  • Grete E. DinesenEmail author
  • Stefan Neuenfeldt
  • Alexandros Kokkalis
  • Andreas Lehmann
  • Josefine Egekvist
  • Kasper Kristensen
  • Peter Munk
  • Karin Hüssy
  • Josianne G. Støttrup
Article

Abstract

This study applied the Systems Approach Framework (SAF) to address the issue of declining Atlantic cod fishery in coastal areas. Interviews of 58 fishers from 26 harbours and meetings with national fisheries organisations and managers revealed the perception of an offshore movement of coastal cod. Numerical modelling based on fishing survey data did not substantiate these perceptions in the data-poor coastal waters. However, Data Storage Tag (DST) information combined with bottom sea water temperature data from the spatio-temporal hydrodynamic Baltic Sea Ice-Ocean Model showed changes in potential cod habitat distribution in the Skagerrak-Kattegat and western Baltic from 1979 to 2016. Subsequently, cod habitats were defined in three categories: (i) potentially suitable (T ≤ 12 °C); (ii) episodic (12 < T ≤ 16 °C); and (iii) unsuitable (T > 16 °C). The environmental changes were linked to the socio-economic component of cod fishery. Cod catches (weight and monetary value) were retrieved using logbook information and data from the Vessel Monitoring System (VMS, 2005–2016) and the Automatic Identification System (AIS, 2006-2016). General additive modelling significantly showed the largest proportion of catches took place in the potentially suitable habitat whereas catches were lower in the episodic habitat and rare in the unsuitable habitat. The results of this first large-scale SAF application are highly valuable for adapting existing fisheries management by: (i) providing information on habitat shrinkage for Maximum Sustainable Yield (MSY) based stock assessments; (ii) adding a spatio-temporal dimension for coastal productivity relative to the vessel-based Individual Transferable Quota (ITQ) system; and (iii) providing a predictive scenario simulation tool for sustainable management under changing environmental conditions.

Keywords

Climate change Potential fish habitats Skagerrak-Kattegat Western Baltic Systems approach framework (SAF) Stakeholder engagement 

Notes

Acknowledgements

This research has received funding from the project BONUS BaltCoast through EU BONUS (Art 185) funded jointly from the European Union’s Seventh Framework Programme for research 2007-2013 BONUS Implementation Agreement and by the Danish Research Council grants PUT1439 and IUT18-9, technological development and demonstration, and from the Baltic Sea national funding institutions, InnovationsFonden, Denmark and the Federal Ministry of Education and Research of Germany (BMBF 03F0717A).

Supplementary material

11852_2019_711_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1.26MB)

References

  1. Andersen SF, Dinesen GE, Worsaae K, Støttrup JG (2019) A retrospective analysis of the Danish cormorant management using the systems approach framework. Submitted, Ocean Coast ManagGoogle Scholar
  2. Asche F, Bjørndal MT, Bjørndal M (2014) Development in fleet fishing capacity in rights based fisheries. Mar Pol 44:166–171CrossRefGoogle Scholar
  3. Basden A, Wood-Harper T (2006) A philosophical discussion of the root definition in soft systems thinking: an enrichment of CATWOE. Syst Res 23:61–87.  https://doi.org/10.1002/sres.689 CrossRefGoogle Scholar
  4. Beare D, Rijnsdorp AD, Blæsbjerg M, Damm U, Egekvist J, Fock H, Kloppmann M, Röckmann C, Schroeder A, Schulze T, Tulp I, Ulrich C, van Hal R, van Kooten T, Verweuj M (2013) Evaluating the effect of fisheries closures: lessons learnt from the plaice box. J Sea Res 84:49–60CrossRefGoogle Scholar
  5. Bjornsson B, Steinarsson A (2002) The food-unlimited growth rate of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 59:494–502CrossRefGoogle Scholar
  6. Blanchard JL, Mills C, Jennings S, Fox CJ, Rackham BD, Eastwood PD, O'Brien CM (2005) Distribution–abundance relationships for North Sea Atlantic cod (Gadus morhua): observation versus theory. Can J Fish Aquat Sci 62:2001–2009.  https://doi.org/10.1139/f05-109 CrossRefGoogle Scholar
  7. Branch TA (2009) How do individual transferable quotas affect marine ecosystems? Fish Res 10(1):39–57Google Scholar
  8. Carss DN (2000) Reducing the conflict between cormorants and fisheries on a pan-European scale. REDCAFE final report to the European Commission (Q5CA-2000-31387):1-160Google Scholar
  9. Collie JS, Wood AD, Jeffries HP (2008) Long-term shifts in the species composition of a coastal fish community. Can J Fish Aquat Sci 65:1352–1365CrossRefGoogle Scholar
  10. Cook RM, Sinclair A, Stefànsson G (1997) Potential collapse of North Sea cod stocks. Nature 385:521–522CrossRefGoogle Scholar
  11. Dinesen GE, Timmermann K, Roth E, Markager S, Ravn-Jonsen L, Hjorth M, Holmer M, Støttrup JG (2011) Mussel production and water framework directive targets in the Limfjord, Denmark: an integrated assessment for use in system-based management. Ecol Soc 16(4):26.  https://doi.org/10.5751/ES-04259-160426 CrossRefGoogle Scholar
  12. Dinesen GE, Rathje IW, Højrup M, Bastardie F, Larsen F, Sørensen TK, Hoffmann E, Eigaard OR (2018) Individual transferable quotas, does one size fit all? Sustainability analysis of an alternative model for quota allocation in a small scale coastal fishery. Mar Policy 88:23–31CrossRefGoogle Scholar
  13. Drinkwater KF (2005) The response of Atlantic cod (Gadus morhua) to future climate change. ICES J Mar Sci 62:1327–1337CrossRefGoogle Scholar
  14. EEA (1999) Environmental indicators: typology and overview. Eur Environ Agency 25:19Google Scholar
  15. Frelat R, Orio A, Casini M, Lehmann A, Mérigot B, Otto SA, Sguotti C, Möllmann C (2018) A three-dimensional view on biodiversity changes: spatial, temporal, and functional perspectives on fish communities in the Baltic Sea. ICES J Mar Sci 75:2463–2475.  https://doi.org/10.1093/icesjms/fsy027 CrossRefGoogle Scholar
  16. Gillgren C, Støttrup JG, Schumacher J, Dinesen GE (2018) Working together: collaborative decision making for integrated coastal management (ICM). J Coast Conserv:1–10.  https://doi.org/10.1007/s11852-018-0631-z CrossRefGoogle Scholar
  17. Hjelm J, Lövgren J, Sköld M, Storr-Poulsen M, Vinther M (2013) Evaluation of the effect of effort redistribution and gear changes in relation to the closed areas in Kattegat. Advice to the Swedish Ministry for Rural Affairs and the Danish Ministry of Food, Agriculture and Fisheries 2013:1–24Google Scholar
  18. Hopkins TS, Bailly D, Støttrup JG (2011) A systems approach framework for coastal zones. Ecol Soc 16(4):25.  https://doi.org/10.5751/ES-04553-160425 CrossRefGoogle Scholar
  19. Hopkins TS, Bailly D, Elmgren R, Glegg G, Sandberg A, Støttrup JG (2012) A systems approach framework for the transition to sustainable development: potential value based on coastal experiments. Ecol Soc 17(3):39.  https://doi.org/10.5751/ES-05266-170339 CrossRefGoogle Scholar
  20. Høst J (2015) Governing through markets: societal objectives, private property rights and small-scale fisheries in Denmark. In: Jentoft S., Chuenpagdee R. (eds) Interactive Governance for Small-Scale Fisheries. MARE Publication Series, vol 13. Springer, Cham.  https://doi.org/10.1007/978-3-319-17034-3_17 Google Scholar
  21. Hutchings JA (1996) Spatial and temporal variation in the density of northern cod and a review of hypothesis for the stock’s collapse. Canadian J Fish Aquat Sci 53:943–962CrossRefGoogle Scholar
  22. Hutchings JA, Ferguson M (2000) Temporal changes in harvesting dynamics of Canadian inshore fisheries for northern Atlantic cod. Can J Fish Aquat Sci 57:805–814CrossRefGoogle Scholar
  23. ICES (2016) Cod (Gadus morhua) in Subdivision 3.a.21 (Kattegat). ICES Advice on fishing opportunities, catch, and effort. Greater North Sea Ecoregion (Version 2, 19 August 2016):1–8.  https://doi.org/10.17895/ices.pub.3094
  24. ICES (2017a) Cod (Gadus morhua) in subarea 4, division 7.D, and subdivision 20 (North Sea, eastern English Channel, Skagerrak). ICES advice on fishing opportunities, catch, and effort. Greater North Sea ecoregion, cod.27.47d20 (14 November 2017):1-15.  https://doi.org/10.17895/ices.pub.3526
  25. ICES (2017b) Cod (Gadus morhua) in subdivision 21 (Kattegat). ICES advice on fishing opportunities, catch, and effort. Greater North Sea ecoregion, cod.27.21 (30 June 2017):1-17.  https://doi.org/10.17895/ices.pub.3094
  26. ICES (2017c) Cod (Gadus morhua) in Subdivision 22–24, western Baltic stock (western Baltic Sea). ICES Advice on fishing opportunities, catch, and effort. Baltic Sea Ecoregion, cod.27.22–24 (version 2: 8 June 2017):1–14.  https://doi.org/10.17895/ices.pub.3095
  27. ICES (2018) Cod (Gadus morhua) in Subarea 4, Division 7.d, and Subdivision 20 (North Sea, eastern English Channel, Skagerrak). ICES Advice on fishing opportunities, catch, and effort. Greater North Sea Ecoregion, cod.27.47d20 (version 3: 14 November 2018):1–15.  https://doi.org/10.17895/ices.pub.4436
  28. Jonsson PR, Corell H, André C, Svedäng H, Moksnes P-O (2016) Recent decline in cod stocks in the North Sea-Skagerrak-Kattegat shifts the sources of larval supply. Fish Oceangr 25(3):210–228.  https://doi.org/10.1111/fog.12146 CrossRefGoogle Scholar
  29. Königson S, Lunneryd S-G, Stridh H, Sundquist F (2009) Grey seal predation in cod gillnet fisheries in the Central Baltic Sea. J Northw Atl Fish Sci 42:41–47.  https://doi.org/10.2960/J.v42.m654 CrossRefGoogle Scholar
  30. Kristensen K, Thygesen UH, Andersen KH, Beyer JE (2014) Estimating spatio-temporal dynamics of size-structured populations. Can J Fish Aquat Sci 71:326–336.  https://doi.org/10.1139/cjfas-2013-0151 CrossRefGoogle Scholar
  31. Lehmann A, Hinrichsen H-H (2000) On the thermohaline variability of the Baltic Sea. J Mar Sys 25:333–357CrossRefGoogle Scholar
  32. Link JS (2018) Stability, and better. Fisheries. 16:1–16.  https://doi.org/10.1139/cjfas-2017-0250 CrossRefGoogle Scholar
  33. Ministry of Foreign Affairs of Denmark (1933a). Bekendtgørelse om en under 31. December 1932 mellem Danmark og Sverige angaaende fiskeriforholdende i de til Danmark og Sverige grænsende farvande. BEK no. 228 of 21/06/1933, Ministry of Foreign Affairs of Denmark, J.nr. 63.D.31, pp 1–5. https://www.retsinformation.dk/pdfPrint.aspx?id=163290
  34. Ministry of Foreign Affairs of Denmark, Royal Regulation (1933b). Anordning om frednings- og ordensbestemmelser af fiskeriet i det til kongerigerne Danmark og Sverige grænsende farvande. AND no. 230 of 29/06/1933, pp 1–2. https://www.retsinformation.dk/Forms/R0710.aspx?id=79587
  35. Ministry of Foreign Affairs of Denmark (2010). Bekendtgørelse om forbud mod visse former for fiskeri i nærmere afgrænsede områder i Kattegat og nordlige del af Øresund. BEK no. 391 of 16/04/2010, Ministry of Food, Agriculture and Fishery, Fisheries Agency, J.nr. 2010–00997, pp 1–9. https://www.retsinformation.dk/pdfPrint.aspx?id=131444
  36. Moksness E, Gjøsæter J, Lagaillarde G, Mikkelsen E, Olsen EM, Sandersen HT, Helge J (2011) Effects of fishing tourism in a coastal municipality: a case study from Risør, Norway. Ecol Soc 16:24.  https://doi.org/10.5751/ES-04290-160311 CrossRefGoogle Scholar
  37. Neat F, Righton D (2007) Warm water occupancy by North Sea cos. Proc R Soc B 274:789-798. Doi:10-1098/rspb.2006.0212Google Scholar
  38. Neuenfeldt S, Hinrichsen H-H, Nielsen A, Andersen KH (2007) Reconstructing migrations of individual cod (Gadus morhua L.) in the Baltic Sea by using electronic data storage tags. Fish Oceanogr 16(6):526–535CrossRefGoogle Scholar
  39. Neuenfeldt S, Andersen KH, Hinrichsen H-H (2009) Some Atlantic cod Gadus morhua in the Baltic Sea visit hypoxic water briefly but often. J Fish Biol 75:290–294CrossRefGoogle Scholar
  40. Nielsen JR, Kristensen K, Lewy P, Bastardie F (2014) A statistical model for estimation of fish density including correlation in size, time and between species from research survey data. PLoS One 9(6):1–15.  https://doi.org/10.1371/journal.pone.0099151 CrossRefGoogle Scholar
  41. O'Brien CMC, Fox J, Planque B, Casey J (2000) Climate variability and North Sea cod. Nature 404:142.  https://doi.org/10.1038/35004654 CrossRefGoogle Scholar
  42. Olsson J, Tomczak MT, Ojaveer H, Gårdmark A, Põllumäe A, Müller-Karulis B, Ustrups D, Dinesen GE, Peltonen H, Putnis I, Szymanek L, Simm M, Heikinheimo O, Gasyukov P, Axe P, Bergström L (2015) Temporal development of coastal ecosystems in the Baltic Sea over the past two decades. ICES J Mar Sci 72(9):2539–2548.  https://doi.org/10.1093/icesjms/fsv143 CrossRefGoogle Scholar
  43. Perry AL, Lowe PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915.  https://doi.org/10.1126/science CrossRefGoogle Scholar
  44. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL (https://www.R-project.org/)
  45. Righton D, Andersen KH, Neat F, Thorsteinsson V, Steingrund P, Svedäng H, Michaelsen K, Hinrichsen H-H, Bendall V, Neuenfeldt S, Wright P, Jonsson P, Huse G, Jvv K, Mosegaard H, Hüssy K, Metcalfe J (2010) Thermal niche of Atlantic cod Gadus morhua: limits, tolerance and optima. Mar Ecol Prog Ser 429:1–13CrossRefGoogle Scholar
  46. Rindorf A, Lewy P (2012) Estimating the relationship between abundance and distribution. Can J Fish Aquat Sci 69:382–397.  https://doi.org/10.1139/F2011-153 CrossRefGoogle Scholar
  47. Slowikowski K (2017) ggrepel: Repulsive Text and Label Geoms for 'ggplot2'. R package version 0.7.0. https://CRAN.R-project.org/package=ggrepel
  48. Støttrup JG, Lund HS, Kindt-Larsen L, Egekvist J, Munk P, Stenberg C (2014a) Coastfish I. mapping of the development of coastal fish populations based on fishermen’s observation for the period from 1980s until 2013. DTU Aqua-rapport 278-2014:1–28 In Danish (ISBN-978-87-7481-185-5)Google Scholar
  49. Støttrup JG, Lund HS, Munk P, Dütz J, Kindt-Larsen L, Egekvist J, Stenberg C, Nielsen TG (2014b) Coastfish I. development in near-coastal fish stocks. DTU Aqua-report 281-2014:1–28 In DanishGoogle Scholar
  50. Støttrup JG, Dinesen GE, Janssen H, Gillgren C, Schernewski G (2017a) Re-visiting ICM theory and practice: lessons learned from the Baltic Sea region. Ocean Coast Manag 139:64–76.  https://doi.org/10.1016/j.ocecoaman.2017.02.002 CrossRefGoogle Scholar
  51. Støttrup JG, Munk P, Kodama M, Stedmon C (2017b) Changes in distributional patterns of plaice Pleuronectes platessa in the central and eastern North Sea; do declining nutrient loadings play a role? J Sea Res 127:164–172CrossRefGoogle Scholar
  52. Støttrup JG, Dinesen GE, Schumacker J, Gillgren C, Ignacio M, Schernewski G (2019) The Systems Approach Framework for collaborative, science-based management of complex systems. J Coast Conserv:1–18.  https://doi.org/10.1007/s11852-018-00677-5 CrossRefGoogle Scholar
  53. Svedäng H, Bardon G (2003) Spatial and temporal aspects of the decline in cod (Gadus morhua L.) abundance in the Kattegat and eastern Skagerrak. ICES J Mar Sci 60:32–37CrossRefGoogle Scholar
  54. The Danish Agrifish Agency (2015) Dansk fiskeriregulering, bilag 1 til MOF alm. Del. – spm.147, 2015. In Danish. http//www.ft.dk/samling/20142/almdel/mof/spm/147/svar/1266220/1551221/index.htm
  55. Timmermann K, Dinesen GE, Markager S, Ravn-Jonsen L, Bassompierre M, Støttrup JG (2014) Development and use of a bioeconomic model for management of mussel fisheries under different nutrient regimes in the temperate estuary of the Limfjord, Denmark. Ecol Soc 19(1):14.  https://doi.org/10.5751/ES-06041-190114 CrossRefGoogle Scholar
  56. Tomczak MT, Dinesen GE, Hoffmann E, Maar M, Støttrup JG (2012) Integrated trend assessment of ecosystem changes in the Limfjord (Denmark): evidence of a recent regime shift? Estuar Coast Shelf Sci 117:178–187CrossRefGoogle Scholar
  57. Vinther M, Eero M (2013) Quantifying relative fishing impact on fish populations based on spatio-temporal overlap of fishing effort and stock density. ICES J Mar Sci 70:618–627.  https://doi.org/10.1093/icesjms/fst001 CrossRefGoogle Scholar
  58. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag New YorkGoogle Scholar
  59. Wieland K, Pedersen EMF, Olesen HJ, Beyer JE (2009) Effect of bottom type on catch rates of North Sea cod (Gadus morhua) in surveys with commercial fishing vessels. Fish Res 96:244–251CrossRefGoogle Scholar
  60. Wood SN, Pya N, Saefken B (2016) Smoothing parameter and model selection for general smooth models (with discussion). J Am Stat Assoc 111:1548–1575CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Grete E. Dinesen
    • 1
    Email author
  • Stefan Neuenfeldt
    • 1
  • Alexandros Kokkalis
    • 1
  • Andreas Lehmann
    • 2
  • Josefine Egekvist
    • 1
  • Kasper Kristensen
    • 1
  • Peter Munk
    • 1
  • Karin Hüssy
    • 1
  • Josianne G. Støttrup
    • 1
  1. 1.DTU Aqua, National Institute of Aquatic ResourcesTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany

Personalised recommendations