Advertisement

Spatio-temporal mangrove canopy variation (2001–2016) assessed using the MODIS enhanced vegetation index (EVI)

  • Marta Rocío Nepita-Villanueva
  • César Alejandro Berlanga-RoblesEmail author
  • Arturo Ruiz-Luna
  • J. Héctor Morales Barcenas
Article

Abstract

Variation patterns in mangrove canopies were evaluated for the Marismas Nacionales coastal ecosystem (northwest Mexico), based on a monthly time series (2001 to 2016) of the MODIS enhanced vegetation index (EVI). By using a non-centralized normalized principal component analysis (PCA), the imagery series was decomposed to the S and T modes, allowing the identification of recurrent temporal patterns as well as spatial patterns over time. It was found that the maximum vegetation vigor in mangroves occurs in autumn, 4–5 months after the driest season, while approximately 15% of the mangrove canopy displayed decreasing trends because of disturbance events, including anomalies in temperature and precipitation. Most of the mangrove canopy was stable (78%), while the remaining 7% was found to be in a recovery phase. The most vulnerable mangrove canopies were detected in areas defined in previous studies as dominated by Avicenia germinans, while resistant and resilient forests where located in areas dominated by Laguncularia racemosa.

Keywords

Mangroves MODIS Enhanced vegetation index (EVI) Time series Principal component analysis (PCA) 

Notes

Acknowledgements

The authors thank the National Council for Science and Technology (CONACYT) for financing the SEP-CONACYT Basic Science Project 157533 “Modeling the relationships between the spatial patterns of the mangrove forest and the distribution and abundance of penaeid shrimp in the Teacapán-Agua Brava lagoon system, Mexico”, and for the grant 748017 to Marta R. Nepita. The MODQ131 products were retrieved online, courtesy of NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, DAAC. The climate data used in this study were courtesy of the National Center for Environmental Prediction (NCEP), Global Weather Data for SWAT.

References

  1. Agraz HCM, García ZC, Iriarte-Vivar S, Flores-Verdugo FJ, Moreno CP (2011) Forest structure, productivity and species phenology of mangroves in the La Mancha lagoon in the Atlantic coast of Mexico. Wetl Ecol Manag 19:273–293.  https://doi.org/10.1007/s11273-011-9216-4 CrossRefGoogle Scholar
  2. Badii MH, Guillen A, Lugo SOP, Aguilar GJJ (2014) Correlación no-paramétrica y su aplicación en la Investigaciones científica. Int J Good Consc 9:31–40. http://www.spentamexico.org/v9-n2/A5.9%282%2931-40.pdf. Accessed 14 June 2018
  3. Berlanga-Robles CA, Ruiz Luna A (2007) Análisis de las tendencias de cambio del bosque de mangle del sistema lagunar Teacapán-Agua Brava, México. Una aproximación con el uso de imágenes de satélite Landsat. Univ Cienc 23:29–46Google Scholar
  4. Blanco y Correa M, Flores VF, Ortiz PMA, de la Lanza EG et al (2011) Análisis Funcional de Marismas Nacionales. Universidad Autónoma de Nayarit, MéxicoGoogle Scholar
  5. Chéret V, Denux J-P (2011) Analysis of MODIS NDVI time series to calculate indicators of Mediterranean forest fire susceptibility. GISCI REMOTE SENS 48:171–194.  https://doi.org/10.2747/1548-1603.48.2.171
  6. De la Lanza EG, Hernández PS (2017) Natural and induced space/time environmental changes in the Teacapán-Agua Brava lagoon system, NW Mexico. JAMB 5:00140.  https://doi.org/10.15406/jamb.2017.05.00140
  7. De la Lanza EG, Sánchez S, Sorani V, Bojórquez T (1996) Características geológicas, hidrológicas, y del manglar en la planicie costera de Nayarit, México. Invest Geog (32):33–54Google Scholar
  8. Eastman JR (2015) TerrSet. Geospatial monitoring and modelling system. Tutorial. Clark Labs, MassachusettsGoogle Scholar
  9. Flores-Verdugo F, González-Farías F, Ramírez-Flores O, Amezcua-Linares F, Yáñez-Arancibia A, Alvarez-Rubio M, Day JW (1990) Mangrove, aquatic primary productivity, and fish community dynamics in Teacapán-Agua Brava lagoon-estuarine system (Mexican Pacific). Estuaries 13:219–230CrossRefGoogle Scholar
  10. Giri C (2016) Observation and monitoring of mangrove forests using remote sensing: opportunities and challenges. Remote Sens 783:1–8.  https://doi.org/10.3390/rs8090783 Google Scholar
  11. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite. Glob Ecol Biogeogr 20:154–159.  https://doi.org/10.1111/j.1466-8238.2010.00584.x CrossRefGoogle Scholar
  12. Giri C, Long J, Abbas S, Murali RM, Qamer FM, Pengra B, Thau D (2015) Distribution and dynamics of mangrove forests of South Asia. J Environ Manag 148:101–111.  https://doi.org/10.1016/j.jenvman.2014.01.020 CrossRefGoogle Scholar
  13. Gwada P, Makoto T, Uezu Y (2000) Leaf phenological traits in the mangrove Kandelia candel (L.) Druce. Aquat Bot 68:1–14.  https://doi.org/10.1016/S0304-3770(00)00109-1 CrossRefGoogle Scholar
  14. Hall-Beyer (2003) Comparison of single-year and multiyear NDVI time series principal components in cold temperate biomes. IEEE Trans Geosci Remote Sens 41:1–8.  https://doi.org/10.1109/TGRS.2003.817274 CrossRefGoogle Scholar
  15. Huete A, Didan K, Miura T, Rodriguez EP, Gao G, Ferreira XL (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213.  https://doi.org/10.1016/S0034-4257(02)00096-2 CrossRefGoogle Scholar
  16. Jiang ZY, Huete AR, Chen J, Chen YH, Li J, Yan GJ, Zhang XY (2006) Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens Environ 101:366–378.  https://doi.org/10.1016/j.rse.2006.01.003 CrossRefGoogle Scholar
  17. Kovacs JM, Wang J, Blanco-Correa M (2001) Mapping disturbances in mangrove forest using multi-date Landsat TM imagery. Environ Manag 27:763–766.  https://doi.org/10.1007/s002670010186 CrossRefGoogle Scholar
  18. Kuenzer C, Bluemel A, Gebhardt S, Vo Quoc T, Dech S (2011) Remote sensing of mangrove ecosystems: a review. Remote Sens 3:878–928.  https://doi.org/10.3390/rs3050878 CrossRefGoogle Scholar
  19. Langner A, Miettine J, Siegert F (2007) Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob Chang Biol 13:2329–2340.  https://doi.org/10.1111/j.1365-2486.2007.01442.x CrossRefGoogle Scholar
  20. Machado-Machado EA, Neeti N, Eastman JR, Chen H (2011) Implications of space-time orientation for principal components analysis of earth observation image time series. Earth Sci Inf 4:117–124.  https://doi.org/10.1007/s12145-011-0082-7 CrossRefGoogle Scholar
  21. Mehlig U (2006) Phenology of red mangrove, Rhizophora mangle L, in the Caeté estuary, Pará, equatorial Brazil. Aquat Bot 84:158–164.  https://doi.org/10.1016/j.aquabot.2005.09.007 CrossRefGoogle Scholar
  22. Neeti N, Eastman JR (2011) A contextual Mann-Kendall approach for assessment of trend significance in image time series. Trans GIS 15:599–611.  https://doi.org/10.1111/j.1467-9671.2011.01280.x CrossRefGoogle Scholar
  23. Neeti N, Eastman JR (2014) Novel approaches in extended principal, component analysis to compare spatio-temporal patterns among multiple image series. Remote Sens Environ 148:84–96.  https://doi.org/10.1016/j.rse.2014.03.015 CrossRefGoogle Scholar
  24. Pastor-Guzman J, Dash J, Atkinson PM (2018) Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sens Environ 205:71–84.  https://doi.org/10.1016/j.rse.2017.11.009 CrossRefGoogle Scholar
  25. Pholert T (2017) Package ‘trend’. On line: https://cran.r-project.org/web/packages/trend/trend.pdf. Accessed 14 Dec 2017
  26. Rahman AF, Dragoni D, Didan K, Barreto-Munoz A, Hutabarat JA (2013) Detecting large scale conversion of mangroves to aquaculture with change point and mixed-pixel analyses of high-fidelity MODIS data. Remote Sens Environ 130:96–107.  https://doi.org/10.1016/j.rse.2012.11.014 CrossRefGoogle Scholar
  27. Rioja-Nieto R, Barrera-Falcón E, Torres-Irineo E, Mendoza-González G, Cuervo-Robayo AP (2017) Environmental drivers of decadal change of a mangrove forest in the north coast of the Yucatan peninsula, Mexico. J Coast Conserv 21:167–175.  https://doi.org/10.1007/s11852-016-0486-0 CrossRefGoogle Scholar
  28. Rogan J, Schneider L, Christman Z, Millones M, Lawrence D, Schmook B (2011) Hurricane disturbance mapping using MODIS EVI data in the southeastern Yucatán, Mexico. Remote Sens Lett 2:259–267.  https://doi.org/10.1080/01431161.2010.520344 CrossRefGoogle Scholar
  29. Rossi E, Rogan J, Schneider L (2013) Mapping forest damage in northern Nicaragua after hurricane Felix (2007) using MODIS enhanced vegetation index data. GISCI REMOTE SENS 50(4):171–194.  https://doi.org/10.1080/15481603.2013.820066
  30. Sukardjo S, Alongi DM, Kusmana C (2013) Rapid litter production and accumulation in Bornean mangrove forest. Ecosphere 4:79.  https://doi.org/10.1890/ES13-00145.1 CrossRefGoogle Scholar
  31. Vázquez LAD (2012) Exploración de Parámetros Biofísicos con Series de Tiempo de Productos MODIS y Estimación de Biomasa con Imágenes de Radar en los Manglares de Laguna Pom Atasta, Campeche y Laguna Agua Brava, Nayarit, México. Dissertation, Centro de Investigaciones en Geografía y Geomática “Ing. Jorge L. Tamayo”, A.CGoogle Scholar
  32. Wagner APL, Fontana DC, Fraisee C, Weber RJ, Hasenack H (2013) Tendências temporais de índices de vegetação nos campos do Pampa do Brasil e do Uruguai. Pesq Agrop Brasileira 48:1192–1200.  https://doi.org/10.1590/S0100-204X2013000900002 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Doctorado en Ciencias Marinas, Departamento de Recursos del MarCentro de Investigación y de Estudios Avanzados del IPNMéridaMexico
  2. 2.Centro de Investigación en Alimentación y Desarrollo A. C, Coordinación Regional MazatlánMazatlánMexico
  3. 3.Departamento de MatemáticasUniversidad Autónoma Metropolitana-IztapalapaCiudad de MéxicoMexico

Personalised recommendations