Advertisement

A comprehensive study about alongshore wave energy flux in the coast of Buenos Aires, Argentina

  • Emilio R. Echevarría
  • Walter C. Dragani
  • Stefania Wörner
Article

Abstract

Alongshore wave energy flux (Pl) was analysed for the coast of Buenos Aires, Argentina. Pl is frequently used to estimate the alongshore sediment transport rate. Pl was estimated from simulated offshore wave parameters obtained from a validated regional SWAN model forced by NCEP/NCAR I, NCEP/DOE II, ERA-Interim and JRA-25 global reanalysis for the year 2005. It was obtained that Pl flows eastwards/northeastwards and increases irregularly from Bahía Blanca to Mar del Plata. Negative and positive space imbalances in Pl along the coast could explain the natural erosive and constructive processes detected between Mar del Plata and Punta Médanos. High inter-annual variability was noted in Pl data series computed from simulated wave parameters using SWAN model forced by NCEP/NCAR I for the period 1980–2012. Anomalous Pl values were detected in 1983, 1993 and 1998 which are in agreement with reported ENSO events. Concluding, the applied methodology seems to constitute a very reasonable alternative to study the space and time variability of Pl at the Buenos Aires coast, between Bahía Blanca and Punta Médanos.

Keywords

SWAN model Simulated wave parameters Atmospheric global reanalysis Inter-annual variability Erosion Buenos Aires 

Notes

Acknowledgments

This paper is a contribution to the CONICET PIP 112-201101-00176 and 112-201501-00174-CO projects.

References

  1. Alonso G, Dragani WC, Codignotto JO (2015) Impacto del cambio climático en la costa: ¿Se están erosionando las playas del nordeste bonaerense? Proceedings of the IX Jornadas Nacionales de Ciencias del Mar, Ushuaia, Tierra del Fuego, pp 54–55 https://jornadasdelmar2015.files.wordpress.com/2015/11/libro-de-resc3bamenes-final.pdf. Accessed 31 August 2016
  2. Balay M (1955) La determinación del nivel medio del Mar Argentino, influencias de las oscilaciones del mar no causadas por la marea. Servicio de Hidrografía Naval, Armada, p 46Google Scholar
  3. Bayón C, Politis G (1998) Las huellas del pasado: pisadas humanas prehistóricas en la costa pampeana. Ciencia Hoy 8(48):12–20Google Scholar
  4. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res Oceans 104(C4):7649–7666CrossRefGoogle Scholar
  5. Caviglia FJ, Pousa JL, Lanfredi NW (1991) A determination of the energy flux constant from dredge records. J Coast Res 7(2):543–549Google Scholar
  6. CERC (1984) Shore Protection Manual. U.S. Army Corps of Engineers, Coastal Engineering Research Center. U.S. Government Printing Office, Washington. D.C., p 640Google Scholar
  7. Codignotto JO, Dragani WC, Martin PB, Simionato CG, Medina RA, Alonso G (2012) Wind-wave climate change and increasing erosion in the outer Río de la Plata, Argentina. Cont Shelf Res 38:110–116CrossRefGoogle Scholar
  8. Datawell (1997) Manual for the waverider. In: LM Haarlem. Laboratory for Instrumentation, The NetherlandsGoogle Scholar
  9. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  10. Dragani WC, Garavento E, Simionato CG, Nuñez MN, Martín P, Campos MI (2008) Wave simulation in the outer Rio de la Plata estuary: evaluation of SWAN model. J Waterw Port Coast Ocean Eng 134(5):299–305CrossRefGoogle Scholar
  11. Dragani WC, Martin P, Campos MI, Simionato CG (2010) Are wind wave heights increasing in south-eastern south American continental shelf between 32S and 40S? Cont Shelf Res 30(5):481–490CrossRefGoogle Scholar
  12. Dragani WC, Cerne BS, Campetella CM, Possia NE, Campos MI (2013a) Synoptic patterns associated with the highest wind-waves at the mouth of the Río de la Plata estuary. Dyn Atmos Oceans 61-62:1–13CrossRefGoogle Scholar
  13. Dragani WC, Martin PB, Alonso G, Codignotto JO, Prario BE, Bacino G (2013b) Wind wave climate change: impacts on the littoral processes at the northern Buenos Aires Province coast, Argentina. Clim Chang 121(4):649–660CrossRefGoogle Scholar
  14. Fiore MME, D’Onofrio EE, Pousa JL, Schnack EJ, Bértola GR (2009) Storm surges and coastal impacts at Mar del Plata, Argentina. Cont Shelf Res 29(14):1643–1649CrossRefGoogle Scholar
  15. Galvin CJ, Schweppe CR (1980) The SPM Energy Flux Method for Predicting Longshore Transport Rate. Coastal Engineering Research Center, Fort Belvoir Va, Technical Paper No. 80–4Google Scholar
  16. Isla FI (2015) Spatial and temporal variations of the Litoral drift, southeastern Buenos Aires Province, Argentina. Revista Geográfica del Sur 5(8):24–41Google Scholar
  17. Juárez VI, Mantobani JM (2006) La costa bonaerense: un territorio particular. In: Isla FI, Lasta CA (eds) Manual de manejo costero para la provincia de Buenos Aires. EUDEM, pp 41–71Google Scholar
  18. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  19. Kanamitsu M, Ebisuzaki W, Woollen J, Shi-Keng Y (2002) NCEP-DOEAMIP-II reanalysis (r-2). Bull Am Meteorol Soc 83(11):1631–1644CrossRefGoogle Scholar
  20. Kokot RR (1997) Littoral drift, evolution and management in Punta Médanos, Argentina. J Coast Res 13(1):192–197Google Scholar
  21. Kokot RR (2010) Espigas indicadoras de proveniencia de olas en la costa argentina. Rev Asoc Geol Argent 67(1):19–26Google Scholar
  22. Lanfredi NW, Pousa JL, Mazio CA, Dragani WC (1992) Wave-power potential along the coast of the province of Buenos Aires, Argentina. Energy 17(11):997–1006CrossRefGoogle Scholar
  23. Marcomini SC, López R (2006) Geomorfología costera y explotación de arena de la playa en la provincia de Buenos Aires y sus consecuencias ambientales. Rev Bras Geomorf 7(2):61–71CrossRefGoogle Scholar
  24. Martin P, Dragani WC, Cerne B, Alonso G, Pescio A, Prario B (2012) Numerical simulation of wind waves on the Río de la Plata: evaluation of four global atmospheric databases. Braz J Oceanogr 60(4):501–511CrossRefGoogle Scholar
  25. Merlotto A, Bértola G, Isla F, Cortizo L, Piccolo M (2013) Short and medium-term coastal evolution of Necochea municipality, Buenos Aires province, Argentina. Environ Earth Sci 71:1213–1225CrossRefGoogle Scholar
  26. Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85(3):369–432CrossRefGoogle Scholar
  27. Perez I, Alonso G, Pescio AE, Dragani WC, Codignotto JO (2017) Longshore wave energy flux: variability and trends in the southern coast of Buenos Aires, Argentina. Reg Stud Mar Sci 16:116–123CrossRefGoogle Scholar
  28. Quefeffeulou P, Croizé-Fillon D (2013) Global altimeter SWH data set - May 2013. Plouzané, Francia: Laboratoire d'Océanographie Spatiale, IFREMERGoogle Scholar
  29. Rojas ML, Recalde MY, London S, Perillo GM, Zilio MI, Piccolo MC (2014) Behind the increasing erosion problem: the role of local institutions and social capital on coastal management in Argentina. Ocean Coast Manag 93:76–87CrossRefGoogle Scholar
  30. SHN (1986) Mar Argentino, de Río de la Plata al Cabo de Hornos. Carta Náutica 50, 4th edn. Servicio de Hidrografía Naval, Buenos AiresGoogle Scholar
  31. SHN (1992) Acceso al Río de la Plata. Carta Náutica H1, 5th edn. Servicio de Hidrografía Naval, Buenos AiresGoogle Scholar
  32. SHN (1999a) Río de la Plata Medio y Superior. Carta Náutica H116, 4th edn. Servicio de Hidrografía Naval, Buenos AiresGoogle Scholar
  33. SHN (1999b) Río de la Plata Exterior. Carta Náutica H113, 2nd edn. Servicio de Hidrografía Naval, Buenos AiresGoogle Scholar
  34. SHN (2017) Tablas de Marea. Ministerio de Defensa. Servicio de Hidrografía Naval, Buenos AiresGoogle Scholar
  35. Simionato CG, Vera CS, Siegismund F (2005) Surface wind variability on seasonal and interannual scales over Río de la Plata area. J Coast Res 21(4):770–783CrossRefGoogle Scholar
  36. Simionato CG, Meccia VL, Dragani WC, Nuñez MN (2006a) On the use of the NCEP/NCAR surface winds for modeling barotropic circulation in the Río de la Plata estuary. Estuar Coast Shelf Sci 70(1):195–206CrossRefGoogle Scholar
  37. Simionato CG, Meccia VL, Dragani WC, Guerrero R, Nuñez MN (2006b) Río de la Plata estuary response to wind variability in synoptic to intraseasonal scales: Barotropic response. J Geophys Res: Oceans, 111(C9)Google Scholar
  38. Simionato CG, Meccia VL, Guerrero R, Dragani WC, Nuñez MN (2007) Rio de la Plata estuary response to wind variability in synoptic to intraseasonal scales: 2. Currents' vertical structure and its implications for the salt wedge structure. J Geophys Res Oceans 112(C7)Google Scholar
  39. Simmonds I, Keay K (2000) Mean southern hemisphere extratropical cyclone behavior in the 40-year NCEP-NCAR reanalysis. J Clim 13(5):873–885CrossRefGoogle Scholar
  40. U.S. Army Corps of Engineers (2017) Coastal engineering manual. Engineer manual 1110–2-1100, U.S. Army Corps of Engineers, Washington, D.C., p 2156Google Scholar
  41. Verón MJ, Bértola GR (2014) Aplicación del método de flujo de energía en el litoral de la provincia de Buenos Aires, Argentina. Lat Am J Sedimentol Basin Anal 21(1):17–23Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Servicio de Hidrografía NavalBuenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Departamento de Ciencias de la Atmósfera y los OcéanosUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations