Advertisement

Journal of Coastal Conservation

, Volume 23, Issue 1, pp 253–267 | Cite as

Microalgal diversity of a tropical estuary in south India with special reference to isolation of potential species for aquaculture

  • K. P. SandeepEmail author
  • K. P. KumaraguruVasangam
  • P. Kumararaja
  • J. Syama Dayal
  • G. B. Sreekanth
  • K. Ambasankar
  • K. K. Vijayan
Article

Abstract

The present study unravels the microalgal diversity and dynamics of a tropical estuarine ecosystem (Muttukadu, of Indian south east coast) and applies tools like isolation of useful species to utilize in aquaculture as well as to conserve the native strains. The study was carried out for a period of 18 months. Selected diversity indices (Simpson index, Dominance index, Shannon- Weiner index, Pielou’s evenness index and Margalef richness index) were used to describe the trends of diversity in the estuary during the study period. Spatial and temporal changes in microalgal diversity in the estuary were analysed. Sixty three species of microalgae belonging to Chlorophyceae, Bacillariophyceae, Cyanophyceae, Dinophyceae, Euglenophyceae, Eustigmatophyceae, Prymnesiophyceae, Prasinophyceae and Zygnematophyceae were identified. Out of these, members of Bacillariophyceae formed the dominant flora (48.5%) with twenty six species, followed by Cyanophyceae (29.2%) and Chlorophyceae (13.6%). The species diversity was increased after the flood during December-2015 in south east coast of India. More than two dozens of microalgal strains useful for larval nutrition in aquaculture were isolated during the study period. Nutrient profiling of isolates revealed the presence of essential fatty acids (EPA & DHA) in high percentage in some of the isolates. Altogether, the present study is the first report of this kind from Muttukadu which gives the insight on a) the seasonal changes in abundance of microalgae species in a tropical estuary and b) suitable time for the isolation of potential species for aquaculture and conservation of various species in the laboratory conditions.

Keywords

Aquaculture Diversity index Estuarine ecosystem Isolation Species conservation 

Notes

Acknowledgements

Authors are grateful to ICAR (Indian Council of Agriculture Research) for the financial support to carry out the research.

References

  1. APHA (2005) Standard methods for the examination of water and wastewater, 21st edition. In: American public health association. USA, Washington, DCGoogle Scholar
  2. Balakrishnan S (2016) Chennai flood of 1-5 December 2015: an extreme climatic event? Curr Sci 110(1):9–10Google Scholar
  3. Bartram J, Rees G (2000). Monitoring bathing waters: a practical guide to the design and implementation of assessments and monitoring programmes. London, E & FN Spon. Published on behalf of the World Health Organization, Commission of the European Communities and US Environmental Protection AgencyGoogle Scholar
  4. Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, Oxford, pp 312–351Google Scholar
  5. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210CrossRefGoogle Scholar
  6. Blanco AC, Nadaoka K, Yamamoto T (2008) Planktonic and benthic microalgal community composition as indicators of terrestrial influence on a fringing reef in Ishigaki Island, Southwest Japan. Mar Environ Res 66:520–535CrossRefGoogle Scholar
  7. Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  8. Borowitzka MA (1997) Algae for aquaculture: Opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  9. Brown MR (2002). Nutritional value of microalgae for aquculture. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortés MG, Simoes N (Ed). Avancesen Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. Cancún, Quintana Roo, MéxicoGoogle Scholar
  10. Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331CrossRefGoogle Scholar
  11. Chakraborty P, Acharyya P, RaghunadhBabu PV, Bandhyopadhyay D (2011) Impact of salinity and pH on phytoplankton community in a tropical freshwater system: an investigation with pigment analysis by HPLC. J Environ Monit 13(3):614–620CrossRefGoogle Scholar
  12. Chalar G (2009) The use of phytoplankton patterns of diversity for algal bloom management. Limnologica 39:200–208CrossRefGoogle Scholar
  13. Chia MA, Bako SP, Alonge SO, Adamu AK (2011) Green algal interactions with physicochemical parameters of some manmade ponds in Zaria, northern Nigeria. Rev Bras Bot 34(3):285–295CrossRefGoogle Scholar
  14. Costa IAS, Cunha SRS, Panosso R, Araújo MFF, Melo JL, Eskinazi-Sant'anna EM (2009) Dynamics of cyanobacteria in eutrophic reservoirs in the semi-arid region of Rio Grande do Norte. Oecologia Brasiliensis 13(2):382–401Google Scholar
  15. Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New DelhiGoogle Scholar
  16. Desikachary TV (1989) Atlas of diatoms. Madras Science Foundation, MadrasGoogle Scholar
  17. Devassy VP, Goes JI (1988) Phytoplankton community structure in a tropical estuarine complex (central west coast of India). Estuar Coast Shelf Sci 27:671–685CrossRefGoogle Scholar
  18. Dokulil MT, Teubner K (2000) Cyanobacterial dominance in lakes. Hydrobiologia 438:1–12CrossRefGoogle Scholar
  19. Elliott M, McLusky DS (2002) The need for definitions in understanding estuaries. Estuar Coast Shelf Sci 55:815–827CrossRefGoogle Scholar
  20. Fernandez-Pinas F, Mateo P, Bonilla I (1995) Ultrastructural changes induced by selected cadmium concentrations in the cyanobacterium Nostoc UAM 208. J Plant Physiol 147:452–456CrossRefGoogle Scholar
  21. Ferreira JG, Wolff WJ, Simas TC, Bricker SB (2005) Does biodiversity of estuarine phytoplankton dependonhydrology? Ecol Model 187(4):513–523CrossRefGoogle Scholar
  22. Galvao HM (1997). Microb Ecol of a brackish water system (Western Baltic). Universidale to Algarve, Gambelas, 8000, Faro, PortugalGoogle Scholar
  23. Gamito S (2010) Caution is needed when applying Margalef diversity index. Ecol Indic 10:550–551CrossRefGoogle Scholar
  24. Gencer T, Nilgun K (2010). Applications of Various Diversity Indices to Benthic Macroinvertebrate Assemblages in Streams of a Natural Park in Turkey Hacettepe University, Science Faculty, Biology Department, Hydrobiology Section, Ankara, TurkeyGoogle Scholar
  25. Giberto DA, Bremec CS, Cortelezzi A, Capitulo AR, Brazeiro A (2007) Ecological boundaries in estuaries: macrobenthic beta-diversity in the Rio de la Plata system (34–36 degrees S). J Mar Biol Assoc UK 87:377–381CrossRefGoogle Scholar
  26. Guillard RRL (2005). Purification methods for microalgae. In Andersen RA (ed) Algal culturing techniques. Phycological society of America, Elsevier, pp 117.Google Scholar
  27. Guo W, Yang L, Zhai W, Chen W, Osburn CL, Huang X, Li Y (2014) Runoff-mediated seasonal oscillation in the dynamics of dissolved organic matter in different branches of a large bifurcated estuary-the Changjiang estuary. J Geophys Res Biogeosci 119(5):776–793CrossRefGoogle Scholar
  28. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaentologia Electronica 4(1):9Google Scholar
  29. Hinder SL, Hays GC, Edwards M, Roberts EC, Walne AW, Gravenor MB (2012) Changes in marine dinoflagellate and diatom abundance under climate change. Nat Clim Chang 2(4):271–275CrossRefGoogle Scholar
  30. Hosmani SP (2010) Phytoplankton diversity in lakes of Mysore district, Karnataka state, India. The Ecoscan 4(1):53–57Google Scholar
  31. Indian meteorological department, Government of India (2016) http://www.imd.gov.in/section/climate/extreme/chennai2.htm
  32. Intergovernmental Oceanographic Commission of UNESCO (2010). Karlson B, Cusack C, Bresnan E, (editors). Microscopic and molecular methods for quantitative phytoplankton analysis. Paris, UNESCO, IOC Manuals and Guides, no. 55Google Scholar
  33. Jun S, Dongyan L (2004) The application of diversity indices in marine phytoplankton studies. Acta Oceanol Sin 26(1):62–75Google Scholar
  34. Krishnamurthy V (2000) Algae of India and neighbouring countries-Chlorophycota. Oxford & IBH publishing Co. Pvt. Ltd., New DelhiGoogle Scholar
  35. Liu B, Vieler A, Li C, Jones AD, Benning C (2013) Triacylglycerol profiling of microalgae Chlamydomonasreinhardtii and Nannochloropsisoceanica. Bioresour Technol 146:310–316CrossRefGoogle Scholar
  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  37. Ma YB, Wang ZY, Yu CJ, Yin YH, Zhou GK (2014) Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour Technol 167:503–509CrossRefGoogle Scholar
  38. Ma XN, Chen TP, Yang B, Liu J, Chen F (2016) Lipid production from Nannochloropsis. Mar Drugs 14:61CrossRefGoogle Scholar
  39. Manakadan R (2014). Evaluation of the water birds of Odiyur lagoon - a wetland near the proposed Cheyyur thermal power plant. Bombay natural history society and madras naturalist’s societyGoogle Scholar
  40. Margalef DR (1968). Perspectives in ecological theory (p. 111). Chicago: The University of Chicago PressGoogle Scholar
  41. McCormick PV, Cairns J Jr (1994) Algae as indicators of environmental change. J Appl Phycol 6:509–526CrossRefGoogle Scholar
  42. Miranda J, Krishnakumar G (2015) Microalgal diversity in relation to the physicochemical parameters of some industrial sites in Mangalore, South India. Environ Monit Assess 187:664CrossRefGoogle Scholar
  43. Morris EK, Caruso T, Buscot F, Fischer M, Hancock C, Maier TS, Rillig MC (2014) Choosing and using diversity indices: insights for ecological applications from the German biodiversity Exploratories. Ecol Evol 4(18):3514–3524CrossRefGoogle Scholar
  44. Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-Lorenzen M, Schmid B (2004) Species evenness and productivity in experimental plant communities. Oikos 107:50–63CrossRefGoogle Scholar
  45. Muller-Feuga A, Moal J, Kaas R (2003). The Microalgae of Aquaculture. In Støttrup JG, McEvoy LA, Live Feeds in Marine Aquaculture (pp. 206–243), Blackwell scienceGoogle Scholar
  46. Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70CrossRefGoogle Scholar
  47. Narasimhan B, Bhallamudi SM, Mondal A, Ghosh S, Mujumdar P (2016). Chennai floods 2015: A rapid assessment. Interdisciplinary Centre for Water Resources, Indian Institute of Science, BangaloreGoogle Scholar
  48. Oberholster OJ, Botha AM, Grobbelaar JU (2004) Microcystis aeruginosa: source of toxic microcystins in drinking water. Afr J Biotechnol 3:159–168CrossRefGoogle Scholar
  49. Palmer CM (1969) Composite rating of algae, tolerating organic pollution. British Phycol Bull 5:78–92CrossRefGoogle Scholar
  50. Patil V, Kallqvist T, Olsen E, Vogt G, Gislerod HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac Int 15:1–9CrossRefGoogle Scholar
  51. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144CrossRefGoogle Scholar
  52. Planas M, Cunha I (1999) Larviculture of marine fish: problems and perspectives. Aquaculture 177:171–190CrossRefGoogle Scholar
  53. Prasath B, Nandakumar R, Jayalakshmi T, Santhanam P (2014) First report on the intense cyanobacteria Microcystis aeruginosa Kützing, 1846 bloom at Muttukkadu backwater, southeast coast of India. Indian journal of geo-marine. Sciences 43(2):258–262Google Scholar
  54. Prescott GW (1951). Monograph on algae of the western great lakes area. Michigan, USA: Cranbrook Institute of ScienceGoogle Scholar
  55. Sandeep KP, Shukla SP, Harikrishna V, Muralidhar AP, Vennila A, Purushothaman CS, Ratheesh Kumar R (2013) Utilization of inland saline water for Spirulina cultivation. Journal of Water Reuse and Desalination 3(4):346–356CrossRefGoogle Scholar
  56. Santiago MF, Silva-Cunha MGG, Neumann-Leitao S, da Costa KMP, Palmeira GCB, Neto FFP, Nunes FS (2010) Phytoplankton dynamics in a highly eutrophic estuary in tropical Brazil. Braz J Oceanogr 58(3):189–205CrossRefGoogle Scholar
  57. Sarma VVSS, Gupta SNM, Babu PVR, Acharya T, Harikrishnachari N, Vishnuvardhan K, Rao NS, Reddy NPC, Sarma VV, Sadhuram Y, Murty TVR, Kumar MD (2009) Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari estuary, India. Estuar Coast Shelf Sci 85:515–524CrossRefGoogle Scholar
  58. Scott JA, Palmer SJ (1990) Sites of cadmium uptake in bacteria used for biosorption. Appl Microbiol Biotechnol 33:221–225CrossRefGoogle Scholar
  59. Seenaya G (1972) Ecological studies in the plankton of certain fresh water ponds of Hyderabad, India. II Phytoplankton Hydrobiologia 39:247–271CrossRefGoogle Scholar
  60. Servel MO, Claire C, Derrien A, Coiffard L, RoeckHoltzahauer de Y (1994) Fatty acid composition of some marine microalgae. Photochemistry 36(3):691–693CrossRefGoogle Scholar
  61. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656CrossRefGoogle Scholar
  62. Shekhar TRS, Kiran BR, Puttaiah ET, Shivaraj Y, Mahadevan KM (2008) Phytoplankton as index of water quality with reference to industrial pollution. J Environ Biol 29(2):233–236Google Scholar
  63. Simpson EH (1949) Measurement of diversity. Nature 163:688CrossRefGoogle Scholar
  64. Sladecek V (1986) Diatoms as indicators of organic pollution. Acta Hydrochim Hydrobiol 14(5):555–566CrossRefGoogle Scholar
  65. Smetacek V, Pollehne F (1986) Nutrient cycling in pelagic systems: a reappraisal of the conceptual framework. Ophelia 26:401–428CrossRefGoogle Scholar
  66. Spatharis S, Danielidis DB, Tsirtsis G (2007) Recurrent Pseudo-nitzschiacalliantha (Bacillariophyceae) and Alexandriuminsuetum (Dinophyceae) winter blooms induced by agricultural runoff. Harmful Algae 6:811–822CrossRefGoogle Scholar
  67. Sreekanth GB, Manju Lekshmi N, Singh NP (2017) Temporal patterns in fish community structure; environmental perturbations in a well-mixed tropical estuary. Proc Nat Acad Sci, India Section B: Biol Sci 87(1):135–145CrossRefGoogle Scholar
  68. Srinivasan K, Natesan U (2013) Spatio-temporal variations in water quality of Muttukadu backwaters, Tamilnadu, India. Water Environ Res 85(7):587–595CrossRefGoogle Scholar
  69. Sullivan MJ (1999) Applied diatom studies in estuaries and shallow coastal environments. In: Stoermer EF, Smol JPS (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 334–351CrossRefGoogle Scholar
  70. Trigueros JM, Orive E (2001) Seasonal variations of diatoms and dinoflagellates in a shallow, temperate estuary, with emphasis on neritic assemblages. Hydrobiologia 444:119–133CrossRefGoogle Scholar
  71. Trigueros JM, Ansotegui A, Orive E (2000) Morphology and distribution of two brackish diatoms, (Bacillariophyceae): CyclotellaatomusHustedt and ThalassiosiraguillardiiHasle in the estuary of Urdaibai, (northern Spain). Nova Hedwigia 70:431–450Google Scholar
  72. Trivedi RK, Goel PK (1986). Chemical and biological methods for water pollution studies. Envir. Pub. Karad (India)Google Scholar
  73. Trott LA, Alongi DM (1999) Variability in surface water chemistry and phytoplankton biomass in two tropical, tidally dominated mangrove creeks. Aust J Mar Freshwat Res 50(5):451–457CrossRefGoogle Scholar
  74. Valdes-Weaver LM, Piehler MF, Pinckney JL, Howe KE, Rossignol KL, Paerl HW (2006) Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically variable Neuse-Pamlico estuarine continuum, NC. USA Limnol Oceanogr 51(3):1410–1420CrossRefGoogle Scholar
  75. Vasudevan S, Arulmoorthy MP, Gnanamoorthy P, Ashokprabu V, Srinivasan M (2015) Continuous blooming of harmful microalgae Microcystis aeruginosa Kutzing, 1846 in Muttukadu estuary, Tamil Nadu, southeast coast of India. Int J Sci Invent today 4(1):15–23Google Scholar
  76. Whittaker RH (1965) Dominance and diversity in land plant communities. Science 147:250–260CrossRefGoogle Scholar
  77. WHO (2004). Rolling revision of the WHO guidelines for drinking-water quality, draft for review and comments. World Health OrganizationGoogle Scholar
  78. Wilham JL, Dorris TC (1968) Biological parameters of water quality criteria. Bioscience 18:447–481Google Scholar
  79. Wolkers H, Barbosa M, Kleinegris DMM, Bosma RA, Wijffels RH (2011). Microalgae: the green gold of the future? In P Harmsen (ed), Large-scale sustainable cultivation of microalgae for the production of bulk commodities (pp. 1–34). Wageningen URGoogle Scholar
  80. Zmora O, Richmond A (2004). Microalgae for Aquaculture: Microalgae Production for Aquaculture. In Amos Richmond (ed), Handbook of Microalgal Culture: Biotechnology and Applied Phycology (pp. 365–379), Blackwell Science Ltd.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.ICAR-Central Institute of Brackishwater Aquaculture (CIBA)ChennaiIndia
  2. 2.ICAR-Central Coastal Agricultural Research Institute (CCARI)GoaIndia

Personalised recommendations