Advertisement

Journal of Coastal Conservation

, Volume 23, Issue 1, pp 163–172 | Cite as

Canopy asymmetry in solitary Diphysa americana trees: wind and landscape on the Mexican coast

  • Mayitza Ramírez-PineroEmail author
  • Andrés Lira-Noriega
  • Sergio Guevara
Article

Abstract

On the coast of the Gulf of Mexico, Diphysa americana is one of the first species to colonize coastal dunes and it is very common to find this species as isolated trees in abandoned sites that were deforested for agricultural purposes. Different species of frugivorous birds perch in these trees, dropping fruit and seeds in their shade. This species, constantly exposed to intense winds from the north, favors and has a selective effect on the establishment of species from the seasonal dry forest beneath its canopy. In this study we evaluated the direction of prevailing wind and its relationship to canopy shape (thigmotropism). We also evaluated differences in the abundance and richness of the plants that establish in the shade of D. americana by comparing trees exposed and not exposed (control) to the prevailing winds. The results indicate that the prevailing winds come from the north and that D. americana is sensitive to both wind strength and direction (F(3) = 13.43, P < 0.001). Its canopy stretches towards the south, where we find greater plant cover (F(3) = 29.61 P < 0.001) and a different species composition compared with the cover to the north. Canopy asymmetry results in differences in the abundance and composition of the species below, and this may have consequences to the process of succession. D. americana trees contribute to the regeneration and conservation of seasonal forest on the coast of central Veracruz, Mexico.

Keywords

Thigmotropism Nucleation Regeneration Conservation Seasonally dry tropical Forest 

Notes

Acknowledgments

We are grateful to Gabriela García Esqueda for lending us her camera to take the photographs, David Díaz Romero for his help identifying the plants in the field, Vinicio Sosa Fernández for assistance with the statistical analyses, Martha Bonilla, Javier Álvarez, Miguel Martínez-Ramos, and Graciela Sánchez for their comments on the manuscript. We thank Bianca Delfosse for her careful translation of the text from the original in Spanish. We are grateful to our colleagues at the Centro de Investigaciones Costeras La Mancha CICOLMA for always providing support in the field, Pronatura Veracruz A. C, and David Díaz Romero for allowing us to work on his land. M.R.-P. was supported by a scholarship from Mexico’s Consejo Nacional de Ciencia y Tecnología (CONACYT #233722). We thank the reviewers for their comments that helped to improve the quality of the manuscript. The authors declare that they have no conflict of interest.

Supplementary material

11852_2018_648_MOESM1_ESM.pdf (26 kb)
ESM 1 (PDF 26 kb)

References

  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42Google Scholar
  2. Acheritobehere L, Orellana I (2016) Influence of wind and native vegetation on the distribution of Pseudotsuga menziesii regeneration in Patagonia, Argentina. Bosque 37:317–325CrossRefGoogle Scholar
  3. Acosta I (1993) Lluvia de semillas en matorrales de dunas costeras en el Morro de La Mancha Veracruz. Bachelor of Science Thesis. Facultad de Ciencias. Universidad Nacional Autónoma de México, México, DfGoogle Scholar
  4. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  5. Campbell D (1998) Salt-wind induced wave regeneration in coastal pine forests in New Zealand Canadia. J For Res 28:953–960Google Scholar
  6. Cano JDG (2010) Los árboles forrajeros como recurso potencial para el desarrollo de sistemas silvopastoriles en la región de la Sierra de Tabasco. Universidad Autónoma Metropolitana México, DF, Doctoral ThesisGoogle Scholar
  7. Castillo Campos G, Medina Abreo ME (2005) Árboles y arbustos de la reserva natural de La Mancha, Veracruz. vol C/582.16097262 C3Google Scholar
  8. Castillo SA, Moreno-Casasola P (1996) Coastal sand dune vegetation: an extreme case of species invasion. J Coast Conserv 2:13–22CrossRefGoogle Scholar
  9. Cocroft RB, Rodríguez RL (2005) The behavioral ecology of insect vibrational communication. Bioscience 55:323–334CrossRefGoogle Scholar
  10. Conrad O et al. (2015) System for automated geoscientific analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8:1991Google Scholar
  11. Daubenmire RF (1943) Vegetational zonation in the Rocky Mountains. Bot Rev 9:325–393CrossRefGoogle Scholar
  12. Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia 95:565–574CrossRefGoogle Scholar
  13. De Langre E (2008) Effects of wind on plants. Annual Review Fluid Mechanics 40:141–168CrossRefGoogle Scholar
  14. Drezner T (2006) Plant facilitation in extreme environments: the non-random distribution of saguaro cacti (Carnegiea gigantea) under their nurse associates and the relationship to nurse architecture. J Arid Environ 65:46–61CrossRefGoogle Scholar
  15. Drezner TD (2010) Nurse tree canopy shape, the subcanopy distribution of cacti, and facilitation in the Sonoran Desert. The Journal of the Torrey Botanical Society 137:277–286CrossRefGoogle Scholar
  16. Drezner TD, Garrity CM (2003) Saguaro distribution under nurse plants in Arizona's Sonoran Desert: directional and microclimate influences. Prof Geogr 55:505–512CrossRefGoogle Scholar
  17. ESRI (2014) ArcGIS desktop: release 10.2.2. Redlands, CA: Environmental Systems Research InstituteGoogle Scholar
  18. Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa. Pedobiologia 47:117–125CrossRefGoogle Scholar
  19. García G (2006) El ambiente geomorfológico. In: Moreno-Casasola P. (Ed.) 2006. Entornos veracruzanos: la costa de La Mancha. Instituto de Ecología, A.C., Xalapa, Veracruz, México, 576 ppGoogle Scholar
  20. Gardiner B, Berry P, Moulia B (2016) Review: wind impacts on plant growth, mechanics and damage. Plant Sci 245:1–25CrossRefGoogle Scholar
  21. Griggs RF (1946) The timberlines of northern America and their interpretation. Ecology 27:275–289CrossRefGoogle Scholar
  22. Guevara S (2006) El paisaje del viento. In: Moreno-Casasola P. (Ed.) 2006. Entornos veracruzanos: la costa de La Mancha. Instituto de Ecología, A.C., Xalapa, Veracruz México, 576 ppGoogle Scholar
  23. Guevara S, Purata SE, Maarel E (1986) The role of remnant forest trees in tropical secondary succession. Plant Ecol 66:77–84Google Scholar
  24. Hale SE, Gardiner BA, Wellpott A, Nicoll BC, Achim A (2012) Wind loading of trees: influence of tree size and competition. Eur J For Res 131:203–217CrossRefGoogle Scholar
  25. Hewson EW, Wade JE, Baker RW, Hewson EW, Baker R (1979) A handbook on the use of trees as an indicator of wind power potential. Oregon State University, Corvallis, Oregon, Department of Atmospheric SciencesGoogle Scholar
  26. Holtmeier F-K (1981) What does the term" Krummholz" really mean? Observations with special reference to the alps and the Colorado front range. Mt Res Dev 1:253–260CrossRefGoogle Scholar
  27. Instituto Nacional de Estadística y Geografía – INEGI (2009) Modelo digital de elevación de alta resolución Lidar, Tipo TERRENO. Edition 1. Aguascalientes, Ags., México. http://www.inegi.org.mx/
  28. Jaffe MJ, Telewski FW (1984) Thigmomorphogenesis: callose and ethylene in the hardening of mechanically stressed plants. Phytochemical adaptations to stress. Springer, In, pp 79–95Google Scholar
  29. Jaffe MJ, Leopold AC, Staples RC (2002) Thigmo responses in plants and fungi. Am J Bot 89:375–382CrossRefGoogle Scholar
  30. Knight MR, Smith SM, Trewavas AJ (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci 89:4967–4971CrossRefGoogle Scholar
  31. Lawrence DB (1939) Some features of the vegetation of the Columbia River gorge with special reference to asymmetry in forest trees. Ecol Monogr 9:217–257CrossRefGoogle Scholar
  32. Lowe CH, Hinds DS (1971) Effect of paloverde (Cercidium) trees on the radiation flux at ground level in the Sonoran Desert in winter. Ecology 52:916–922CrossRefGoogle Scholar
  33. Martinez ML, Moreno-Casasola P, Vázquez G (1997) Effects of disturbance by sand movement and inundation by water on tropical dune vegetation dynamics. Can J Bot 75:2005–2014CrossRefGoogle Scholar
  34. Martínez ML, Vázquez G, Sánchez Colón S (2001) Spatial and temporal variability during primary succession on tropical coastal sand dunes. J Veg Sci 12:361–372CrossRefGoogle Scholar
  35. Maun MA (2009) The biology of coastal sand dunes. Oxford University PressGoogle Scholar
  36. Mesquita RC, Ickes K, Ganade G, Williamson GB (2001) Alternative successional pathways in the Amazon Basin. J Ecol 89:528–537CrossRefGoogle Scholar
  37. Miller TE, Gornish ES, Buckley HL (2010) Climate and coastal dune vegetation: disturbance, recovery, and succession. Plant Ecol 206:97–104CrossRefGoogle Scholar
  38. Moreno-Casasola P (1986) Sand movement as a factor in the distribution of plant communities in a coastal dune system. Vegetatio 65:67–76CrossRefGoogle Scholar
  39. Moreno-Casasola P (1988) Patterns of Plant Species Distribution on Coastal Dunes Along the Gulf of Mexico. J Biogeography 15:787–806CrossRefGoogle Scholar
  40. Moreno-Casasola PE (2006a) Entornos veracruzanos: la costa de La Mancha. Instituto de Ecología, A.C., Xalapa, Ver. México, 576 ppGoogle Scholar
  41. Moreno-Casasola P, Vázquez G (2006b) Las comunidades de las dunas. In: Moreno-Casasola P. (Ed.) 2006. Entornos veracruzanos: la costa de La Mancha. Instituto de Ecología, A.C., Xalapa, Veracruz México, 576 ppGoogle Scholar
  42. Moreno-Casasola P, van der Maarel E, Castillo S, Huesca M, Pisanty I (1982) Ecología de la vegetación de dunas costeras: estructura y composición en el Morro de la Mancha, Veracruz. Biotica 7(4):491–526Google Scholar
  43. National Oceanic and Atmospheric Administration (2016) http://www.ndbc.noaa.gov/station_page.php?station=lmbv4&unit=M&tz=STN. Accessed May 2016
  44. Niembro A, Vázquez M, Sánchez, O (2010) Árboles de Veracruz. 100 especies para la reforestación estratégica. Gobierno de Veracruz, XalapaGoogle Scholar
  45. Noguchi Y (1979) Deformation of trees in Hawaii and its relation to wind. The Journal of Ecology 67(2):611–628CrossRefGoogle Scholar
  46. Olson JS (1958) Lake Michigan dune development 1. Wind-velocity profiles The Journal of Geology 66:254–263Google Scholar
  47. Puigdefábregas J, Gallart F, Biaciotto O, Allogia M, del Barrio G (1999) Banded vegetation patterning in a subantarctic forest of Tierra del Fuego, as an outcome of the interaction between wind and tree growth. Acta Oecol 20:135–146CrossRefGoogle Scholar
  48. R Development Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3 900051–07-0, http://www.R-project.org
  49. Ramírez MG, Espinosa INR (2002) Seguimiento de nortes en el litoral del Golfo de México en la temporada 1999-2000. Rev Geogr 131:5–19Google Scholar
  50. Ramírez-Pinero M (2012) Técnicas para la restauración de la selva baja caducifolia en el centro de Veracruz. Master of Science Thesis, Instituto de Ecología, A.C., Xalapa, Veracruz, MéxicoGoogle Scholar
  51. Reis A, Bechara FC, Tres DR (2010) Nucleation in tropical ecological restoration. Sci Agric 67:244–250CrossRefGoogle Scholar
  52. Richmond TA, Mueller-Dombois D (1972) Coastline ecosystems on Oahu, Hawaii. Vegetatio 25:367–400CrossRefGoogle Scholar
  53. Saura-Mas S, Lloret F (2005) Wind effects on dispersal patterns of the invasive alien Cortaderia selloana in Mediterranean wetlands. Acta Oecol 27:129–133CrossRefGoogle Scholar
  54. Slocum MG, Horvitz CC (2000) Seed arrival under different genera of trees in a neotropical pasture. Plant Ecol 149:51–62CrossRefGoogle Scholar
  55. Smith AP (1972) Notes on wind-related growth patterns of paramo plants in Venezuela. Biotropica 4:10–16CrossRefGoogle Scholar
  56. Smith V, Steenkamp M (2001) Classification of the terrestrial habitats on Marion Island based on vegetation and soil chemistry. J Veg Sci 12:181–198CrossRefGoogle Scholar
  57. Stokes VJ, Morecroft MD, Morison JI (2006) Boundary layer conductance for contrasting leaf shapes in a deciduous broadleaved forest canopy. Agric For Meteorol 139:40–54CrossRefGoogle Scholar
  58. Tamasi E, Stokes A, Lasserre B, Danjon F, Berthier S, Fourcaud T, Chiatante D (2005) Influence of wind loading on root system development and architecture in oak (Quercus robur L.) seedlings. Trees 19:374–384CrossRefGoogle Scholar
  59. Telewski FW (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476CrossRefGoogle Scholar
  60. Telewski FW (2012) Is windswept tree growth negative thigmotropism? Plant Sci 184:20–28CrossRefGoogle Scholar
  61. The Plant List (2013). Version 1.1. Published on the Internet; http://www.theplantlist.org/ (Accessed May 2017)
  62. Wadsworth R (1959) An optimum wind speed for plant growth. Ann Bot 23:195–199CrossRefGoogle Scholar
  63. Watt M, Moore J (2005) McKinlay B. The influence of wind on branch characteristics of Pinus radiata Trees 19:58–65Google Scholar
  64. Yokosawa M, Kubota Y, Hara T (1996) Crown architecture and species coexistence in plant communities. Ann Bot 78:437–447CrossRefGoogle Scholar
  65. Zinke PJ (1962) The pattern of influence of individual forest trees on soil properties. Ecology 43:130–133CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Mayitza Ramírez-Pinero
    • 1
    Email author
  • Andrés Lira-Noriega
    • 2
  • Sergio Guevara
    • 1
  1. 1.Instituto de Ecología A.C., Red de Ecología FuncionalXalapaMexico
  2. 2.CONACYT Research Fellow, Instituto de Ecología A.C., Red de Estudios Moleculares AvanzadosXalapaMexico

Personalised recommendations