Advertisement

Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: lessons and challenges from the Adriatic Sea, Italy

  • D. Bonaldo
  • F. Antonioli
  • R. Archetti
  • A. Bezzi
  • A. Correggiari
  • S. Davolio
  • G. De Falco
  • M. Fantini
  • G. Fontolan
  • S. Furlani
  • M. G. Gaeta
  • G. Leoni
  • V. Lo Presti
  • G. Mastronuzzi
  • S. Pillon
  • A. Ricchi
  • P. Stocchi
  • A. G. Samaras
  • G. Scicchitano
  • S. Carniel
Article

Abstract

The evolution of coastal and transitional environments depends upon the interplay of human activities and natural drivers, two factors that are strongly connected and many times conflicting. The urge for efficient tools for characterising and predicting the behaviour of such systems is nowadays particularly pressing, especially under the effects of a changing climate, and requires a deeper understanding of the connections among different drivers and different scales. To this aim, the present paper reviews the results of a set of interdisciplinary and coordinated experiences carried out in the Adriatic Sea (north-eastern Mediterranean region), discussing state-of-the art methods for coastal dynamics assessment and monitoring, and suggests strategies towards a more efficient coastal management. Coupled with detailed geomorphological information, the methodologies currently available for evaluating the different components of relative sea level rise facilitate a first identification of the flooding hazard in coastal areas, providing a fundamental element for the prioritization and identification of the sustainability of possible interventions and policies. In addition, hydro- and morpho-dynamic models are achieving significant advances in terms of spatial resolution and physical insight, also in a climatological context, improving the description of the interactions between meteo-oceanographic processes at the regional scale to coastal dynamics at the local scale. We point out that a coordinated use of the described tools should be promptly promoted in the design of survey and monitoring activities as well as in the exploitation of already collected data. Moreover, expected benefits from this strategy include the production of services and infrastructures for coastal protection with a focus on short-term forecast and rapid response, enabling the implementation of an event-oriented sampling strategy.

Keywords

Monitoring Multi-scale modelling Climate change Coastal vulnerability 

Notes

Acknowledgements

This work was supported by RITMARE National Flagship initiative funded by the Italian Ministry of Education, University and Research (IV Phase, Line 5, “Coastal Erosion and Vulnerability”), by the UE H2020 Programme (CEASELESS Project, grant agreement No. 730030), and by the Interreg-MED Programme (CO-EVOLVE Project).

The Authors thankfully acknowledge Dr. Edoardo Bucchignani (CMCC and CIRA, Capua, Italy) for providing the climatological model data mentioned in the present study.

References

  1. Antic S, Laprise R, Denis B, de Elia R (2004) Testing the downscaling ability of a one-way nested regional climate model in regions of complex topography. Clim Dyn 23(5):473–493.  https://doi.org/10.1007/s00382-004-0438-5 CrossRefGoogle Scholar
  2. Antonioli F, Leoni G (2007) Mappa Nazionale delle aree a rischio di allagamento da parte del mare. Dossier ENEA per lo studio dei cambiamenti climatici e loro effetti (in Italian) RT ENEA, 83pp.Google Scholar
  3. Antonioli F, Leoni G, Gambarelli G, Caiaffa E, Goria A (2002) Piana di Fondi carta del rischio di inondazione per innalzamento del livello del mare, calcolo del valore della perdita (in Italian) Workshop ENEA Fondazione ENI Enrico Mattei, Volume Abstract, RT ENEA 04.07.2002.Google Scholar
  4. Antonioli F, Ferranti L, Fontana A, Amorosi A, Bondesan A, Braitenberg C, Dutton A, Fontolan G, Furlani S, Lambeck K, Mastronuzzi G, Monaco C, Spada G, Stocchi P (2009) Holocene relative sea-level changes and vertical movements along the Italian coastline. Quat Int 206(1–2):102–133.  https://doi.org/10.1016/j.quaint.2008.11.008 CrossRefGoogle Scholar
  5. Antonioli F, Lo Presti V, Anzidei M, Deiana G, De Sabata E, Ferranti L, Furlani S, Mastronuzzi G, Orrù P, Pagliarulo R, Rovere A, Sannino G, Sansò P, Scicchitano G, Spampinato CR, Vacchi M, Vecchio A (2015) Tidal notches in the Mediterranean Sea. Quat Sci Rev 119:1–19CrossRefGoogle Scholar
  6. Antonioli F, Anzidei M, Amorosi A, Lo Presti V, Mastronuzzi G, Deiana G, De Falco G, Fontolan G, Fontana A, Lisco S, Marsico A, Moretti M, Orru P, Sannino GM, Serpelloni E, Vecchio A (2017) Sea-level rise and potential drowning of the Italian coastal plains: flooding risk scenarios for 2100. Quat Sci Rev 158:29–43CrossRefGoogle Scholar
  7. Archetti R (2009) Quantifying the evolution of a beach protected by low crested structures using video monitoring. J. Coast Res 25(4):884–899CrossRefGoogle Scholar
  8. Archetti R, Gaeta MG (2012) Wave run-up observation and 2DV numerical investigation on beaches protected by structures. Proc Coast Eng Conf 33:1–12Google Scholar
  9. Archetti R, Zanuttigh B (2010) Integrated monitoring of the hydro-morphodynamics of a beach protected by low crested detached breakwaters. Coast Eng 57(10):879–891CrossRefGoogle Scholar
  10. Archetti R, Paci A, Carniel S, Bonaldo D (2016) Optimal index related to the shoreline dynamics during a storm: the case of Jesolo beach. Nat Hazards Earth Syst Sci 16:1107–1122.  https://doi.org/10.5194/nhess-16-1107-2016 CrossRefGoogle Scholar
  11. Ashton AD, Hutton EWH, Kettner AJ, Xing F, Kallumadikal J, Nienhuis J, Giosan L (2013) Progress in coupling models of coastline and fluvial dynamics. Comput Geosci 53:21–29.  https://doi.org/10.1016/j.cageo.2012.04.004 CrossRefGoogle Scholar
  12. Baart F, Van Der Kaaij T, Van Ormondt M, Van Dongeren A, Van Koningsveld M, Roelvink JA (2009) Real-time forecasting of morphological storm impacts: a case study in the Netherlands. J. Coast Res 56:1617–1621Google Scholar
  13. Baart F, van Ormondt M, van Thiel de Vries JSM, van Koningsveld M (2016) Morphological impact of a storm can be predicted three days ahead. Comput Geosci 90(Part B):17–23.  https://doi.org/10.1016/j.cageo.2015.11.011 CrossRefGoogle Scholar
  14. Balica SF, Wright NG, van der Meulen F (2012) A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Nat Hazards 64(1):73–105.  https://doi.org/10.1007/s11069-012-0234-1 CrossRefGoogle Scholar
  15. Barbariol F, Benetazzo A, Carniel S, Sclavo M (2013) Improving the assessment of wave energy resources by means of coupled wave-ocean numerical modeling. Renew Energy 60:462–471.  https://doi.org/10.1016/j.renene.2013.05.043 CrossRefGoogle Scholar
  16. Bellafiore D, Bucchignani E, Gualdi S, Carniel S, Djurdjevic V, Umgiesser G (2012) Assessment of meteorological climate models as inputs for coastal studies. Ocean Dyn 62(4):555–568CrossRefGoogle Scholar
  17. Beltrami GM, Bellotti G, De Girolamo P, Sammarco P (2001) Treatment of wave breaking and total absorption in a mild-slope equation FEM model. J Waterw Port Coast Ocean Eng 127:263–271CrossRefGoogle Scholar
  18. Benetazzo A, Fedele F, Carniel S, Ricchi A, Bucchignani E, Sclavo M (2012) Wave climate of the Adriatic Sea: a future scenario simulation. Nat Hazards Earth Syst Sci 12:2065–2076.  https://doi.org/10.5194/nhess-12-2065-2012 CrossRefGoogle Scholar
  19. Benetazzo A, Carniel S, Sclavo M, Bergamasco A (2013) Wave-current interaction: effect on the wave field in a semi-enclosed basin. Ocean Model 70:152–165.  https://doi.org/10.1016/j.ocemod.2012.12.009 CrossRefGoogle Scholar
  20. Blum MD, Roberts HH (2009) Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat Geosci 2:488–491.  https://doi.org/10.1038/ngeo553 CrossRefGoogle Scholar
  21. Boero F (2014) The future of the Mediterranean Sea ecosystem: towards a different tomorrow. Rend Lincei Sci Fis 26:3–12.  https://doi.org/10.1007/s12210-014-0340-y CrossRefGoogle Scholar
  22. Bonaldo D, Archetti R, Carniel S (2014) Monitoring northern Adriatic seashore at Jesolo resort. Sea Technol 55(2):55–58Google Scholar
  23. Bonaldo D, Benetazzo A, Sclavo M, Carniel S (2015) Modelling wave-driven sediment transport in a changing climate: a case study for northern Adriatic Sea (Italy). Reg Environ Chang 15:45–55.  https://doi.org/10.1007/s10113-014-0619-7 CrossRefGoogle Scholar
  24. Bonaldo D, Benetazzo A, Bergamasco A, Campiani E, Foglini F, Sclavo M, Trincardi F, Carniel S (2016) Interactions among Adriatic continental margin morphology, deep circulation and bedform patterns. Mar Geol 375:82–98.  https://doi.org/10.1016/j.margeo.2015.09.012 CrossRefGoogle Scholar
  25. Bonaldo D, Bucchignani E, Ricchi A, Carniel S (2017) Wind storminess in the Adriatic Sea in a climate change scenario. Acta Adriat 58(2):195–208Google Scholar
  26. Bonaldo D, Orlic M, Carniel S (2018) Framing continental shelf waves in the southern Adriatic Sea, a further flushing factor beyond dense water cascading. Sci Rep 8(1):660.  https://doi.org/10.1038/s41598-017-18853-2 CrossRefGoogle Scholar
  27. Bondesan M, Castiglioni GB, Elmi C, Gabbianelli G, Marocco R, Pirazzoli P, Tomasin A (1995) Coastal areas at risk from storm surges and sea-level rise in North-Eastern Italy. J Coast Res 11:1354–1379.  https://doi.org/10.2307/4298437 CrossRefGoogle Scholar
  28. Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res 104:7649–7666.  https://doi.org/10.1029/98JC02622 CrossRefGoogle Scholar
  29. Brown JM, Davies AG (2009) Methods for medium-term prediction of the net sediment transport by waves and currents in complex coastal regions. Cont Shelf Res 29:1502–1514.  https://doi.org/10.1016/j.csr.2009.03.018 CrossRefGoogle Scholar
  30. Bucchignani E, Sanna A, Gualdi S, Castellari S, Schiano P (2013) Simulation of the climate of the XX century in the alpine space. Nat Hazards 67:981–990.  https://doi.org/10.1007/s11069-011-9883-8 CrossRefGoogle Scholar
  31. Bucchignani E, Montesarchio M, Zollo AL, Mercogliano P (2015) High-resolution climate simulations with COSMO-CLM over Italy: performance evaluation and climate projections for the 21st century. Int J Climatol 36(2):735–756.  https://doi.org/10.1002/joc.4379 CrossRefGoogle Scholar
  32. Burchard H (2002) Applied turbulence modelling in marine waters, vol. 100 of Lecture Notes in Earth Sciences. Springer, Berlin, p 229Google Scholar
  33. Burcharth HF, Lykke Andersen T, Lara JL (2014) Upgrade of coastal defence structures against increased loadings caused by climate change: a first methodological approach. Coast Eng 87:112–121.  https://doi.org/10.1016/j.coastaleng.2013.12.006 CrossRefGoogle Scholar
  34. Carniel S, Benetazzo A, Bonaldo D, Falcieri FM, Miglietta MM, Ricchi A, Sclavo M (2016) Scratching beneath the surface while coupling atmosphere, ocean and waves: analysis of a dense water formation event. Ocean Model 10:101–112.  https://doi.org/10.1016/j.ocemod.2016.03.007 CrossRefGoogle Scholar
  35. Cavaleri L, Bertotti L, Lionello P (1989) Wind-waves evaluation in the Adriatic and Mediterranean seas. Int J Numer Methods Eng 27:57–69CrossRefGoogle Scholar
  36. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  37. Cialone MA, Stauble DK (1998) Historical findings on ebb shoal mining. J Coast Res 14(2):537–563Google Scholar
  38. Cooper NJ, Pontee NI (2006) Appraisal and evolution of the littoral 'sediment cell' concept in applied coastal management: experiences from England and Wales (2006). Ocean Coast Manag 49(7–8):498–510CrossRefGoogle Scholar
  39. Correggiari A, Remia A, Foglini F, Gallerani A, Miserocchi S, Moscon G, Piazza R, Bertaggia R (2013) Riorganizzazione dei dati geofisici, geognostici ed ambientali relativi ai depositi sabbiosi sommersi presenti nelle aree denominate RV_A, RV_B, RV_C, RV_D, RV_G, RV_JC nella piattaforma nord adriatica per implementare il geodatabase in_Sand. Attività nell’ambito del Progetto IPA–Adriatico SHAPE n.167. (in Italian). Technical Report, Istituto di Scienze Marine, Bologna, ItalyGoogle Scholar
  40. Correggiari A, Perini L, Remia A, Luciani P, Foglini F, Grande V, Moscon G, Calabrese L, Lorito S (2016) Sistema Informativo per l’utilizzo della risorsa Sabbia offshore nei progetti di protezione costiera: geodatabase in_Sand. Rapporto tecnico. (in Italian) 36 pp. Centro Stampa della Regione Emilia-Romagna ISBN 978–88–8186-012-8.Google Scholar
  41. Davolio S, Stocchi P, Benetazzo A, Bohm E, Riminucci F, Ravaioli M, Li XM, Carniel S (2015a) Exceptional bora outbreak in winter 2012: validation and analysis of high-resolution atmospheric model simulations in the northern Adriatic area. Dynam Atmos Oceans 71:1–20.  https://doi.org/10.1016/j.dynatmoce.2015.05.002. CrossRefGoogle Scholar
  42. Davolio S, Silvestro F, Malguzzi P (2015b) Effects of increasing horizontal resolution in a convection permitting model on flood forecasting: the 2011 dramatic events in Liguria (Italy). J Hydrometeorol 16:1843–1856.  https://doi.org/10.1175/JHM-D-14-0094.1 CrossRefGoogle Scholar
  43. De Falco G, Budillon F, Conforti A, De Muro S, Di Martino G, Innangi S, Perilli A, Tonielli R, Simeone S (2014) Sandy beaches characterization and management of coastal erosion on western Sardinia island (Mediterranean Sea). J. Coast Res 70:395–400CrossRefGoogle Scholar
  44. Duong TM, Ranasinghe R, Walstra D, Roelvink D (2016) Assessing climate change impacts on the stability of small tidal inlet systems: why and how? Earth Sci Rev 154:369–380.  https://doi.org/10.1016/j.earscirev.2015.12.001 CrossRefGoogle Scholar
  45. Eurosion (2004) Living with coastal erosion in Europe: sediment and space for sustainability PART III–Methodology for assessing regional indicators. 20 May 2004. Available at: http://www.eurosion.org/reports-online/part3.pdf (last Access: 20.10.2017)
  46. Ferranti L, Antonioli F, Amorosi A, Dai Prà G, Mastronuzzi G, Mauz B, Monaco C, Orrù P, Pappalardo M, Radtke U, Renda P, Romano P, Sansò P, Verrubbi V (2006) Elevation of the last interglacial highstand in Italy: a benchmark of coastal tectonics. Quat. Int 145-146:3–18.  https://doi.org/10.1016/j.quaint.2005.07.009 CrossRefGoogle Scholar
  47. Ferrarin C, Roland A, Bajo M, Umgiesser G, Cucco A, Davolio S, Buzzi A, Malguzzi P, Drofa O (2013) Tide-surge-wave modelling and forecasting in the Mediterranean Sea with focus on the Italian coast. Ocean Model 61:38–48CrossRefGoogle Scholar
  48. Foglini F, Campiani E, Trincardi F (2016) The reshaping of the south west Adriatic margin by cascading of dense shelf waters. Mar Geol 375:64–81CrossRefGoogle Scholar
  49. Fontolan G, Pillon S, Delli Quadri F, Bezzi A (2007) Sediment storage at tidal inlets in northern Adriatic lagoons: ebb-tidal delta morphodynamics, conservation and sand use strategies. Estuar Coast Shelf Sci 75:261–277CrossRefGoogle Scholar
  50. Fontolan G, Bezzi A, Pillon S (2011) Rischio da mareggiata. (in Italian) In: Atlante Geologico della Provincia di Venezia. Cartografie e Note illustrative. Ed. A.Vitturi. Provincia di Venezia: pp. 581–600 + Plate 16. ISBN 978-88-907207-0-3.Google Scholar
  51. Fontolan G, Bezzi A, Martinucci D, Pillon S, Popesso C, Rizzetto F (2015) Sediment budget and management of the Veneto beaches, Italy: an application of the modified littoral cells management system (SICELL). Coastal and Maritime Mediterranean Conference CM 47–50, Ferrara 25–27 November 2015. Revue Paralia online, doi: https://doi.org/10.5150/cmcm.2015.010
  52. Furlani S, Cucchi F (2013) Downwearing rates of vertical limestone surfaces in the intertidal zone (gulf of Trieste, Italy). Mar Geol 343:92–98CrossRefGoogle Scholar
  53. Furlani S, Cucchi F, Forti F, Rossi A (2009) Comparison between coastal and inland karst limestone lowering rates in the north-eastern Adriatic region (Italy and Croatia). Geomorphology 104:73–81CrossRefGoogle Scholar
  54. Furlani S, Ninfo A, Zavagno E, Paganini P, Zini L, Biolchi S, Antonioli F, Coren F, Cucchi F (2014a) Submerged notches in Istria and the Gulf of Trieste: results from the Geoswim project. Quat Int 332:37–47CrossRefGoogle Scholar
  55. Furlani S, Pappalardo M, Gomez-Pujol L, Chelli A (2014b) The rocky coasts of the Mediterranean and Black Sea. In: Kennedy, D.M., Stephenson, W.J., Naylor, L.A. (Eds), Rock coast geomorphology: a global synthesis. Geological Society, London, Memoirs 40:89–123Google Scholar
  56. Gabrié C, Lagabrielle E, Bissery C, Crochelet E, Meola B, Webster C, Claudet J, Chassanite A, Marinesque S, Robert P, Goutx M, Quod C (2012) The status of marine protected areas in the Mediterranean Sea. MedPAN & RAC/SPA. Ed: MedPAN Collection. 256 pp.Google Scholar
  57. Gaeta MG, Samaras AG, Federico I, Archetti R, Maicu F, Lorenzetti G (2016) A coupled wave-3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach. Nat Hazards Earth Syst Sci 16:2071–2083.  https://doi.org/10.5194/nhess-16-2071-2016 CrossRefGoogle Scholar
  58. Galea A, Grifoll M, Roman F, Mestres M, Armenio V, Sanchez-Arcilla A, Zammit Mangion L (2014) Numerical simulation of water mixing and renewals in the Barcelona harbour area: the winter season. Environ Fluid Mech 14:1405–1425CrossRefGoogle Scholar
  59. Giorgi F, Gutowki WJ Jr (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490.  https://doi.org/10.1146/annurev-environ-102014-021217 CrossRefGoogle Scholar
  60. Giorgi F, Lionello P (2008) Climate change projection for the Mediterranean region. Glob Planet Chang 63:90–104CrossRefGoogle Scholar
  61. Gornitz VM, White TW, Cushman RM (1991) Vulnerability of the U.S. to future sea-level rise. In Proceedings of seventh symposium on coastal and ocean management: 2354–2368. Long Beach, CA (USA)Google Scholar
  62. Grande V, Proietti R, Foglini F, Remia A, Correggiari A, Paganelli D, Targusi M, Franceschini G, La Valle P, Berducci MT, La Porta B, Lattanzi L, Lisi I, Maggi C, Loia M, Pazzini A, Gabellini M, Nicoletti L (2015) Sistema Informativo per il monitoraggio ambientale della risorsa sabbia offshore nei progetti di protezione costiera: geodatabase env_Sand. ISPRA, Manuali e Linee guida, 127/2015: 63 pp. In ItalianGoogle Scholar
  63. Greco M, Martino G (2016) Vulnerability assessment for preliminary flood risk mapping and management in coastal areas. Nat Hazards 82:7–26.  https://doi.org/10.1007/s11069-016-2293-1 CrossRefGoogle Scholar
  64. Guerrero M, Rüther N, Szupiany RN (2012) Laboratory validation of acoustic Doppler current profiler (ADCP) techniques for suspended sediment investigations. Flow Meas Instrum 23(1):40–48.  https://doi.org/10.1016/j.flowmeasinst.2011.10.003 CrossRefGoogle Scholar
  65. Guerrero M, Rüther N, Archetti R (2014) Comparison under controlled conditions between multi-frequency ADCPs and LISST-SL for investigating suspended sand in rivers. Flow Meas Instrum 37:73–82CrossRefGoogle Scholar
  66. Hervouet JM (2007) Hydrodynamics of free surface flows: modelling with the finite element method, Wiley, Ltd, 360 pp.Google Scholar
  67. High C, Hanna FK (1970) A method for the direct measurement of erosion on rock surfaces. British Geomorphological Research Group, Technical Bulletin 5:1–25Google Scholar
  68. Hinkel J (2005) DIVA: an iterative method for building modular integrated models. Adv Geosci 4:45–50CrossRefGoogle Scholar
  69. Hinkel J, Klein R (2009) The DINAS-COAST project: developing a tool for the dynamic and interactive assessment of coastal vulnerability. Glob Environ Chang 19(3):384–395CrossRefGoogle Scholar
  70. Hinkel J, Lincke D, Vafeidis AT, Perrette M, Nicholls RJ, Tol RSJ, Marzeion B, Fettweis X, Ionescu C, Levermann A (2014) Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc Natl Acad Sci U S A 111(9):3292–3297.  https://doi.org/10.1073/pnas.1222469111 CrossRefGoogle Scholar
  71. Holman RA, Stanley J (2007) The history and technical capabilities of Argus. Coast Eng 54:477–491CrossRefGoogle Scholar
  72. Horton BP, Rahmstorf S, Engelhart SE, Kemp AC (2014) Expert assessment of sea-level rise by AD 2100 and AD 2300. Quat Sci Rev 841(6)Google Scholar
  73. Inman DL (2005) Littoral Cells. In: Schwartz ML (ed) Encyclopedia of coastal science: 594–599. Encyclopedia of Earth Science Series. Springer, Dordrecht.  https://doi.org/10.1007/1-4020-3880-1_196 CrossRefGoogle Scholar
  74. Jäger WS, Christie EK, Hanea AM, den Heijer C, Spencer T (2018) A Bayesian network approach for coastal risk analysis and decision making. Coast Eng 134:48–61CrossRefGoogle Scholar
  75. Jiménez JA, Osorio A, Marino-Tapia I, Davidson M, Medina R, Kroon A, Archetti R, Ciavola P, Aarnikhof S (2007) Beach recreation planning using video-derived coastal state indicators. Coast Eng 54:507–521CrossRefGoogle Scholar
  76. Kaminsky GM, Gelfenbaum G (2000) The Southwest Washington coastal erosion study: a scientific research project to address management-scale objectives. In: Proceedings of coastal society 17th conference "coasts at the millennium". 9–12 July 2000, Portland, OregonGoogle Scholar
  77. Karambas TV, Samaras AG (2014) Soft shore protection methods: the use of advanced numerical models in the evaluation of beach nourishment. Ocean Eng 92:129–136.  https://doi.org/10.1016/j.oceaneng.2014.09.043 CrossRefGoogle Scholar
  78. Kroon A, Davidson MA, Aarninkhof SGJ, Archetti R, Armaroli C, Gonzalez M, Medri S, Osorio A, Aagaard T, Holman RA, Spanhoff R (2007) Application of remote sensing video systems to coastline management problems. Coast Eng 54:493–505.  https://doi.org/10.1016/j.coastaleng.2007.01.004 CrossRefGoogle Scholar
  79. Lambeck K, Antonioli F, Anzidei M, Ferranti L, Leoni G, Scicchitano G, Silenzi S (2011) Sea level change along Italian coast during Holocene and a projection for the future. Quat Int 232(1–2):250–257.  https://doi.org/10.1016/j.quaint.2010.04.026 CrossRefGoogle Scholar
  80. Lamberti A, Archetti R, Kramer M, Paphitis D, Mosso C, Di Risio M (2005) European experience of low crested structures for coastal management. Coast Eng 52(10–11):841–866CrossRefGoogle Scholar
  81. Ličer M, Smerkol P, Fettich A, Ravdas M, Papapostolou A, Mantziafou A, Strajnar B, Cedilnik J, Jeromel M, Jerman J, Petan S, Sofianos S (2016) Modeling the ocean and atmosphere during an extreme bora event in northern Adriatic using one-way and two-way atmosphere–ocean coupling. Ocean Sci 12:71–86.  https://doi.org/10.5194/os-12-71-2016 CrossRefGoogle Scholar
  82. Luo J, Li M, Sun Z, O'Connor BA (2013) Numerical modelling of hydrodynamics and sand transport in the tide-dominated coastal-to-estuarine region. Mar Geol 342:14–27.  https://doi.org/10.1016/j.margeo.2013.06.004 CrossRefGoogle Scholar
  83. Marsico A, Lisco S, Lo Presti V, Antonioli F, Amorosi A, Anzidei M, Deiana G, De Falco G, Fontana A, Fontolan G, Moretti M, Orrù P, Serpelloni E, Sannino G, Vecchio A, Mastronuzzi G (2017) Flooding scenario for four Italian coastal plains using three relative sea-level rise models. J Maps 13(2):961–967CrossRefGoogle Scholar
  84. McLaughlin S, Cooper JAG (2010) A multi-scale coastal vulnerability index: a tool for coastal managers? Environ Hazards-UK 9(3):233–248(16)CrossRefGoogle Scholar
  85. Mendoza PET, Jimenez QJA (2008) Vulnerability assessment to coastal storms at a regional scale. Proc. 31st ICCE Conference, ASCE, Hamburg.Google Scholar
  86. Mihanović H, Vilibić I, Carniel S, Tudor M, Russo A, Bergamasco A, Bubić N, Ljubešić Z, Viličić D, Boldrin A, Malačić V, Celio M, Comici C, Raicich F (2013) Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Sci 9(3):561–572.  https://doi.org/10.5194/os-9-561-2013 CrossRefGoogle Scholar
  87. Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544CrossRefGoogle Scholar
  88. Milliman JD, Bonaldo D, Carniel S (2016) Flux and fate of river-discharged sediments to the Adriatic Sea. Adv Oceanogr Limnol 7(2):106–114.  https://doi.org/10.4081/aiol.2016.5899. CrossRefGoogle Scholar
  89. Montereale Gavazzi G, Madricardo F, Janowski L, Kruss A, Blondel P, Sigovini M, Foglini F (2016) Evaluation of seabed mapping methods for fine-scale classification of extremelyshallow benthic habitats – application to the Venice lagoon, Italy. Estuar Coast Shelf Sci 170:45–60.  https://doi.org/10.1016/j.ecss.2015.12.014 CrossRefGoogle Scholar
  90. Nelson B (1970) Hydrography, sediment dispersal, and recent historical development of the Po River Delta, Italy. In: Morgan JP, Shaver RH (eds) Deltaic sedimentation, modern and ancient. Society of Economic Paleontologists and Mineralogists, Special Publication No. 15, pp 152–184Google Scholar
  91. Nicholls RJ, French JR, van Maanen B (2015) Simulating decadal coastal morphodynamics. Geomorphology 256:1–2.  https://doi.org/10.1016/j.geomorph.2015.10.015 CrossRefGoogle Scholar
  92. Özyurt G (2007) Vulnerability of coastal areas to sea level rise: a case of study on Göksu Delta. Thesis submitted to the Graduate School of Natural and Appl Sci of Middle-East Technical University. January 2007. Available on-line at: http://etd.lib.metu.edu.tr/upload/12608146/index.pdf (last access: 10.08.2011).
  93. Palmer BJ, van der Elst R, Mackay F, Mather AA, Smith AM, Bundy SC, Thackeray Z, Leuci R, Parak O (2011) Preliminary coastal vulnerability assessment for KwaZulu-Natal, South Africa. J Coast Res:1390–1395Google Scholar
  94. Payo A, Hall JW, French J, Sutherland J, van Maanen B, Nicholls RJ, Reeve DE (2016) Causal loop analysis of coastal geomorphological systems. Geomorphology 256:36–48.  https://doi.org/10.1016/j.geomorph.2015.07.048 CrossRefGoogle Scholar
  95. Peckham SD, Hutton EWH, Norris B (2013) A component-based approach to integrated modeling in the geosciences: the design of CSDMS. Comput Geosci 53:3–12.  https://doi.org/10.1016/j.cageo.2012.04.002. CrossRefGoogle Scholar
  96. Petronio A, Roman F, Nasello C, Armenio V (2013) Large-Eddy simulation model for wind driven sea circulation in coastal areas. Nonlinear Process Geophys 20:1095–1112CrossRefGoogle Scholar
  97. Rahmstorf S (2007) A semi-empirical approach to projecting Future Sea-level rise. Science 315:368–370.  https://doi.org/10.1126/science.1135456 CrossRefGoogle Scholar
  98. Ramieri E, Hartley A, Barbanti A, Duarte Santos F, Gomes A, Hilden M, Laihonen P, Marinova N, Santini M (2011) Methods for assessing coastal vulnerability to climate change, European topic Centre on climate change impacts, vulnerability and adaptation (ETC CCA) technical paper, Bologna (IT) 93, October 2011Google Scholar
  99. Ranasinghe R, Larson M, Savioli J (2010) Shoreline response to a single shore-parallel submerged breakwater. Coast Eng 57:1006–1017.  https://doi.org/10.1016/j.coastaleng.2010.06.002 CrossRefGoogle Scholar
  100. Regione Emilia-Romagna (2011) Nuovi strumenti per la gestione dei litorali in Emilia–Romagna, SICELL il sistema gestionale delle celle litoranee. (In Italian). Servizio Difesa del Suolo della Costa e Bonifica, 61 p.Google Scholar
  101. Reikard G (2009) Forecasting ocean wave energy: tests of time-series models. Ocean Eng 36:348–356.  https://doi.org/10.1016/j.oceaneng.2009.01.003 CrossRefGoogle Scholar
  102. Renault L, Chiggiato J, Warner JC, Gomez M, Vizoso G, Tintoré J (2012) Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of lion and Balearic Sea. J Geophys Res-Oceans 117(C9).  https://doi.org/10.1029/2012JC007924
  103. Ribas F, de Swart HE, Calvete D, Falqués A (2012) Modeling and analyzing observed transverse sand bars in the surf zone. J Geophys Res 117(F2):F02013.  https://doi.org/10.1029/2011JF002158 CrossRefGoogle Scholar
  104. Ricchi A, Miglietta MM, Falco PP, Benetazzo A, Bonaldo D, Bergamasco A, Sclavo M, Carniel S (2016) On the use of a coupled ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea. Atmos Res 172-173:48–65.  https://doi.org/10.1016/j.atmosres.2015.12.023 CrossRefGoogle Scholar
  105. Richards J, Nicholls RJ (2009) Impacts of climate change in coastal systems in Europe. PESETA-coastal systems study. JRC scientific and technical reports.Google Scholar
  106. Russo A, Coluccelli A, Carniel S, Benetazzo A, Valentini A, Paccagnella T, Ravaioli M, Bortoluzzi G (2013) Operational models hierarchy for short term marine predictions: the Adriatic Sea example. OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension, 0–5.Google Scholar
  107. Samaras AG, Koutitas CG (2012) An integrated approach to quantify the impact of watershed management on coastal morphology. Ocean Coast Manag 69:68–77.  https://doi.org/10.1016/j.ocecoaman.2012.08.010 CrossRefGoogle Scholar
  108. Samaras AG, Koutitas CG (2014a) The impact of watershed management on coastal morphology: a case study using an integrated approach and numerical modelling. Geomorphology 211:52–63.  https://doi.org/10.1016/j.geomorph.2013.12.029 CrossRefGoogle Scholar
  109. Samaras AG, Koutitas CG (2014b) Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems: a case study using an integrated approach. Int J Sediment Res 29:304–315.  https://doi.org/10.1016/s1001-6279(14)60046-9 CrossRefGoogle Scholar
  110. Samaras AG, Gaeta MG, Moreno Miquel A, Archetti R (2016) High resolution wave and hydrodynamics modelling in coastal areas: operational applications for coastal planning, decision support and assessment. Nat Hazards Earth Syst Sci 16:1499–1518CrossRefGoogle Scholar
  111. Santoro F, Tonino M, Torresan S, Critto A, Marcomini A (2013) Involve to improve: a participatory approach for a decision support system for coastal climate change impacts assessment. The north Adriatic case. Ocean Coast Manag 78:101–111.  https://doi.org/10.1016/j.ocecoaman.2013.03.008 CrossRefGoogle Scholar
  112. Sclavo M, Benetazzo A, Carniel S, Bergamasco A, Falcieri FM, Bonaldo D (2013) Wave-current interaction effect on sediment dispersal in a shallow semi-enclosed basin. J Coastal Res 165(65):1587–1592.  https://doi.org/10.2112/SI65-268.1 CrossRefGoogle Scholar
  113. Siegle E, Huntley DA, Davidson MA (2007) Coupling video imaging and numerical modelling for the study of inlet morphodynamics. Mar Geol 236:143–163CrossRefGoogle Scholar
  114. Signell RP, Carniel S, Cavaleri L, Chiggiato J, Doyle JD, Pullen J, Sclavo M (2005) Assessment of wind quality for oceanographic modelling in semi-enclosed basins. J Mar Syst 53(1–4):217–233.  https://doi.org/10.1016/j.jmarsys.2004.03.006 CrossRefGoogle Scholar
  115. Simeone S, De Falco G (2012) Morphology and composition of beach-cast Posidonia oceanica litter on beaches with different exposures. Geomorphology 151-152:224–233CrossRefGoogle Scholar
  116. Simeone S, De Falco G, Quattrocchi G, Cucco A (2014) Morphological changes of a Mediterranean beach over one year (san Giovanni Sinis, western Mediterranean). J. Coast Res 70:217–222CrossRefGoogle Scholar
  117. Simon TP, Morris CC, Argyilan EP (2016) Characterization of coastal drift-cell sediment processes effecting the restoration of the southern Lake Michigan shoreline. Environ Manag 58(6):1059–1073CrossRefGoogle Scholar
  118. Soomere T, Bishop SR, Viska M, Raamet A (2015) An abrupt change in winds that may radically affect the coasts and deep sections of the Baltic Sea. Clim Res 62(2):163–171CrossRefGoogle Scholar
  119. Stephenson WJ, Kirk RM, Kennedy DM, Finlayson BL, Chen Z (2012) Long term shore platform surface lowering rates: revisiting gill and Lang after 32 years. Mar Geol 299-302:90–95CrossRefGoogle Scholar
  120. Stockdon HF, Doran KJ, Thompson DM, Sopkin KL, Plant NG, Sallenger AH (2012) National assessment of hurricane-induced coastal erosion hazards-Gulf of Mexico, U.S. Geological Survey Open-File Report 2012–1084:51. https://pubs.er.usgs.gov/publication/ofr20121084
  121. Syvitski JPM, Kettner AJ (2007) On the flux of water and sediment into the northern Adriatic Sea. Cont Shelf Res 27:296–308.  https://doi.org/10.1016/j.csr.2005.08.029 CrossRefGoogle Scholar
  122. Szlafsztein C, Sterr H (2007) A GIS-based vulnerability assessment of coastal natural hazards, state of Para, Brazil. J Coast Conserv 11(1):53–66CrossRefGoogle Scholar
  123. Tolman HL, Group WD (2014) User manual and system documentation of WAVEWATCH III version 4.18. NOAA / NWS / NCEP / MMAB Technical Note, p. 311.Google Scholar
  124. Torresan S, Zabeo A, Rizzi J, Critto A, Pizzol L, Giove S, Marcomini A (2010) Risk assessment and decision support tools for the integrated evaluation of climate change on coastal zones. In Swayne D.A., Wanhong Yang, Voinov A.A., Rizzoli A. and Filatova T. (eds.). Proceedings of the International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada.Google Scholar
  125. Torresan S, Critto A, Rizzi J, Marcomini A (2012) Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the north Adriatic Sea. Nat Hazards Earth Syst 12:2347–e2368CrossRefGoogle Scholar
  126. Trudgill ST, High CJ, Hanna KK (1981) Improvements to the micro-erosion meter. British Geomorphological Research Group, Technical Bulletin 29:3–17Google Scholar
  127. Turner IL, Anderson DJ (2007) Web-based and ‘real-time’ beach management system. Coast Eng 54(6–7):555–565CrossRefGoogle Scholar
  128. Uunk L, Wijnberg KM, Morelissen R (2010) Automated mapping of the intertidal beach bathymetry from video images. Coast Eng 57(4):461–469CrossRefGoogle Scholar
  129. van Maanen B, Nicholls RJ, French JR, Barkwith A, Bonaldo D, Burningham H, Murray B, Payo A, Sutherland J, Thornhill G, Townend IH, van der Wegen MJA, Walkden M (2016) Simulating mesoscale coastal evolution for decadal coastal management: a new framework integrating multiple, complementary modelling approaches. Geomorphology 256:68–80.  https://doi.org/10.1016/j.geomorph.2015.10.026 CrossRefGoogle Scholar
  130. Villaret C, Hervouet JM, Kopmann R, Merkel U, Davies AG (2013) Morphodynamic modeling using the Telemac finite-element system. Comput Geosci 53:105–113.  https://doi.org/10.1016/j.cageo.2011.10.004 CrossRefGoogle Scholar
  131. Warner JC, Armstrong B, He R, Zambon JB (2010) Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model 35(3):230–244.  https://doi.org/10.1016/j.ocemod.2010.07.010 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • D. Bonaldo
    • 1
  • F. Antonioli
    • 2
  • R. Archetti
    • 3
    • 11
  • A. Bezzi
    • 4
    • 11
  • A. Correggiari
    • 5
  • S. Davolio
    • 6
  • G. De Falco
    • 7
  • M. Fantini
    • 6
  • G. Fontolan
    • 4
    • 11
  • S. Furlani
    • 4
  • M. G. Gaeta
    • 3
  • G. Leoni
    • 8
  • V. Lo Presti
    • 9
  • G. Mastronuzzi
    • 10
    • 11
  • S. Pillon
    • 4
    • 11
  • A. Ricchi
    • 1
  • P. Stocchi
    • 6
  • A. G. Samaras
    • 3
  • G. Scicchitano
    • 12
  • S. Carniel
    • 1
  1. 1.Institute of Marine Sciences, National Research Council (ISMAR-CNR)VeniceItaly
  2. 2.ENEA – National Agency for New Technologies, Energy and EnvironmentRomeItaly
  3. 3.Dipartimento di Ingegneria Civile, Ambientale e dei MaterialiUniversità degli Studi di BolognaBolognaItaly
  4. 4.Dipartimento di Matematica e GeoscienzeUniversità degli Studi di TriesteTriesteItaly
  5. 5.Institute of Marine Sciences, National Research Council (ISMAR-CNR)BolognaItaly
  6. 6.Institute of Atmospheric Sciences and Climate, National Research Council (ISAC-CNR)BolognaItaly
  7. 7.Istituto per l’Ambiente Marino Costiero (IAMC-CNR)OristanoItaly
  8. 8.ISPRA - Istituto Superiore per la Protezione e la Ricerca AmbientaleRomeItaly
  9. 9.Department of Earth SciencesUniversità La SapienzaRomeItaly
  10. 10.Dipartimento di Scienze della Terra e GeoambientaliUniversità “Aldo Moro”BariItaly
  11. 11.CONISMA, Consorzio Interuniversitario per le Scienze del MareRomeItaly
  12. 12.Studio Geologi Associati T.S.TCataniaItaly

Personalised recommendations